Skip to main content
Log in

Bioremediation of motor oil-contaminated soil and water by a novel indigenous Pseudomonas otitidis strain DU13 and characterization of its biosurfactant

  • Short Reports
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Production of biosurfactant by a novel indigenous isolate Pseudomonas otitidis strain DU13 and its role in bioremediation of petroleum hydrocarbon is reported. The identity of the isolate was confirmed by 16S rDNA gene sequencing analysis (Genbank accession: MK177190). The biosurfactant produced by the isolate could reduce the surface tension of petroleum supplemented medium by 46% just after 7 days of treatment. The emulsification index (E24) of the surfactant was found 37, 35, and 20%, respectively, against used motor oil, diesel, and kerosene. The FTIR spectrum of the crude biosurfactant showed the presence of υC–H stretch, υCH2, υ-C=C stretch and υC–H bonding. The isolated strain could degrade 26% of TPH content of used motor oil in liquid culture. Whereas, ex situ pilot-scale field trial demonstrated very high bioremediation potential of the isolate in terms of germination rate of Vigna radiata and Cicer arietinum seeds and plant growth just after 20 days of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abdulsalam S, Bugaje IM, Adefila SS, Ibrahim S (2011) Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. Int J Environ Sci Technol 8(1):187–194

    Article  CAS  Google Scholar 

  • Abouseoud M, Maachi R, Amrane A (2007) Biosurfactant production from olive oil by Pseudomonas fluorescens. In: M_endez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex Research Center, Spain, pp 340–347.

  • Ahmed F, Fakhruddin ANM (2018) A review on environmental contamination of Petroleum Hydrocarbons and its biodegradation. Int J Eng Sci Nat Res 11(3):2572–1119

    Google Scholar 

  • Akpur OB, Okolomike UF, Oloalu TD, Aderiye BI (2014) Remediation of polluted wastewater effluents—hydrocarbon removal. Appl Sci Res 9(4):160–173

    Google Scholar 

  • Ammeri RW, Mehri I, Badi S, Hassen W, Hassen A (2017) Pentachlorophenol degradation by Pseudomonas fluorescens. Water Qual Res J 52(2):99–108

    Article  CAS  Google Scholar 

  • Anatol’evna EL (2014) Strain of bacteria Bacillus vallismortis-Destructor of oil and oil products; Patent filing no. 2013113813/10, dated: 27.03.2013. Federal service on intellectual property-Russian Federation (RU2513702C1)

  • Atagana HI, Haynes RJ, Wallis FM (2006) Fungal bioremediation of creosote-contaminated soil: a laboratory scale bioremediation study using indigenous soil fungi. Water Air Soil Pollut 172(1–4):201–219. https://doi.org/10.1007/s11270-005-9074-x

    Article  CAS  Google Scholar 

  • Basumatary M, Das S, Gogoi M, Das I, Charingia D, Borah D (2020) Evaluation of pilot scale in-vitro and ex-situ hydrocarbon bioremediation potential of two novel indigenous strains of Bacillus vallismortis. Bioremediat J 24(2–3):190–203

    Article  CAS  Google Scholar 

  • Bidlan R, Afsar M, Manonmani HK (2004) Bioremediation of HCH-contaminated soil: elimination of inhibitory effects of the insecticide on radish and green gram seed germination. Chemosphere 56(8):803–811

    Article  CAS  Google Scholar 

  • Borah D, Yadav RNS (2016) Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain. Egypt J Pet 26(1):181–188

    Article  Google Scholar 

  • Borah D, Agarwal K, Khataniar A, Konwar D, Gogoi SB, Kallel M (2019) A newly isolated strain of Serratia sp. from an oil spillage site of Assam shows excellent bioremediation potential. 3 Biotech 9(7):283

    Article  Google Scholar 

  • Bordoloi NK, Konwar BK (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505

    Article  CAS  Google Scholar 

  • Chen S, Yang L, Hu M, Liu J (2011) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrophomonas sp. strain ZS-S-01 and its use in bioremediation of contaminated soils. Appl Microbiol Biotechnol 90(2):755–67. https://doi.org/10.1007/s00253-010-3035-z

    Article  CAS  PubMed  Google Scholar 

  • Corich V, Soldati E, Giacomin A (2004) Optimization of fluorescence microscopy techniques for the detection of total and viable lactic acid bacteria in whey starter cultures. Ann Microbiol 54(3):335–342

    Google Scholar 

  • Couto MNPFS, Monteiro E, Vasconcelos MTSD (2010) Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environ Sci Pollut Res Int 17(7):1339–1346. https://doi.org/10.1007/s11356-010-0318-y

    Article  CAS  PubMed  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 1:1–13. https://doi.org/10.4061/2011/941810

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345

    Article  CAS  Google Scholar 

  • Dasgupta D, Ghosh R, Sengupta TK (2013) Biofilm-mediated enhanced crude oil degradation by newly isolated Pseudomonas species. ISRN Biotechnol. https://doi.org/10.5402/2013/250749

    Article  PubMed  PubMed Central  Google Scholar 

  • Deepak R, Jayapradha R (2015) Lipopeptide biosurfactant from Bacillus thurindiensis pak 2310—A potential antagonist against Fusarium oxysporum. J Mycol Med 25:e15–e24

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dongfeng Z, Weilin W, Yunbo Z, Qiyou L, Haibin Y, Chaocheng Z (2011) Study on isolation, identification of a petroleum hydrocarbon degrading bacterium Bacillus fusiformis sp. and influence of environmental factors on degradation efficiency. Chin Pet Process Petrochem Technol (environ Prot) 13(4):74–82

    Google Scholar 

  • French KE, Terry N (2019) A high-throughput fluorescence-based assay for rapid identification of petroleum degrading bacteria. Front Microbiol 10:1–7

    Article  Google Scholar 

  • Guermouche MA, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 22(20):15332–16346

    Article  Google Scholar 

  • Hockenreiner M, Neugebauer H, Elango L (2015) Ex-situ bioremediation method for the treatment of groundwater contaminated with PAHs. Int J Environ Sci Technol 12(1):285–296. https://doi.org/10.1007/s13762-013-0427-5

    Article  CAS  Google Scholar 

  • Holliger C, Gaspard S, Glod G, Heijman C, Schumacher W, Schwarzenbach RP, Vazquez F, Gaspard S (1997) Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol Rev 20(3–4):517–523

    Article  CAS  Google Scholar 

  • https://www.poison.org/articles/my-child-just-took-a-swig-of-motor-oil-173. Accessed 15 Aug 2021

  • Iglewski BH (1996) Pseudomonas in medical microbiology, 4th edn. University of Texas Medical, Galveston

    Google Scholar 

  • Chengdu Institute of Biology of Chinese Academy of Science (2014) Bacterial strain JY9 and use thereof. Patent no. CN103497909B

  • Janani PG, Keerthi K, Deshpande A, Bhattacharya S, Indira RP (2014) Molecular identification of the isolated diesel degrading bacteria and optimization studies. J Biochem Technol 5(3):727–730

    Google Scholar 

  • Lin TC, Pan PT, Young CC, Chang JS, Chang TC, Cheng SS (2011) Evaluation of the optimal strategy for ex situ bioremediation of diesel oil-contaminated soil. Environ Sci Pollut Res Int 18(9):1487–1496

    Article  CAS  Google Scholar 

  • Mahanty B, Pakshiranjan K, Dasu VV (2006) Production and properties of a biosurfactant applied to polycyclic aromatic hydrocarbon solubilization. Appl Biochem Biotechnol 6:23–27

    Google Scholar 

  • Maila MP, Cloete TE (2002) Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil. Int Biodeterior Biodegrad 50:107–113

    Article  CAS  Google Scholar 

  • Mandri T, Lin J (2007) Isolation and characterization of engine oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa. Afr J Biotechnol 6:23–27

    CAS  Google Scholar 

  • Mohajeri L, Aziz HA, Isa MH, Zahed MA, Mohajeri S (2010) Ex-situ bioremediation of crude oil in soil, a comparative kinetic analysis. Bull Environ Contam Toxicol 85(1):54–58. https://doi.org/10.1007/s00128-010-0058-1

    Article  CAS  PubMed  Google Scholar 

  • Molina-Barahona L, Vega-Loyo L, Guerrero M, Ramírez S, Romero I, Vega-Jarquín C, Albores A (2005) Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process. Environ Toxicol 20(1):100–109

    Article  CAS  Google Scholar 

  • Mukherjee AK, Bordoloi NK (2011) Bioremediation and reclamation of soil contaminated with petroleum oil hydrocarbons by exogenously seeded bacterial consortium: a pilot-scale study. Environ Sci Pollut Res 18:471–478

    Article  CAS  Google Scholar 

  • Novik G, Savich V, Kiseleva E (2015) An insight into beneficial Pseudomonas bacteria. In: Shah MM (ed) Microbiology in agriculture and human health. Intech Open Science, UK. https://doi.org/10.5772/60502

  • Oil Tanker Spill Statistics (2020) ITOPF. https://www.itopf.org/knowledge-resources/data-statistics/statistics/. Accessed 16 Aug 2021

  • Onur G, Yilmaz F, Icgen B (2015) Diesel oil degradation potential of a bacterium inhabiting petroleum hydrocarbon contaminated surface waters and characterization of its emulsification ability. J Surfactant Deterg 18:707–717

    Article  CAS  Google Scholar 

  • Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2018) Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Sci Total Environ 636:968–974

    Article  CAS  Google Scholar 

  • Ramos JL, Duque E, Ramos-Gonzalez MI (1991) Survival in soils of a herbicde-resistant Pseudomonas putida strain bearing a recombinant TOL plasmid. Appl Environ Microbiol 57:260–266

    Article  CAS  Google Scholar 

  • Report pegs Ennore oil spills at 251 tonnes (2017) The Hindu, November 09. https://www.thehindu.com/news/national/tamil-nadu/report-pegs-ennore-oil-spill-at-251-tonnes/article20006432.ece

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  Google Scholar 

  • Saber FMA, Abdelhafez AA, Hassan EA, Ramadan EM (2015) Characterization of fluorescent pseudomonads isolates and their efficiency on the growth promotion of tomato plant. Ann Agric Sci 60(1):131–140

    Article  Google Scholar 

  • Singh P, Tiwary BN (2016) Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. Bioresour Bioprocess 3:42

    Article  Google Scholar 

  • Syed S, Tollamadugu NVKV, Lian B (2020) Aspergillus and Fusarium control in the early stages of Arachis hypogaea (groundnut crop) by plant growth-promoting rhizobacteria (PGPR) consortium. Microbiol Res 240:126562

    Article  CAS  Google Scholar 

  • Thenmozhi R, Sornalakshmi AN, Nagasathya A et al (2011) Characterization of biosurfactant produced by bacterial isolates from engine oil contaminated soil. Adv Environ Biol 5:2402–2408

    CAS  Google Scholar 

  • Thomas JC, Wafula D, Chauhan A, Green SJ, Gragg R, Jagoe C (2014) A survey of deepwater horizon (DWH) oil-degrading bacteria from the Eastern oyster biome and its surrounding environment. Front Microbiol 5:1–12

    CAS  Google Scholar 

  • Vieira PA, Faria S, Vieira RB, De Franc FP, Cardoso VL (2009) Statistical analysis and optimization of nitrogen, phosphorus, and inoculum concentrations for the biodegradation of petroleum hydrocarbons by response surface methodology. World J M Biotechnol 25:427–438

    Article  CAS  Google Scholar 

  • Vila J, Lopez Z, Sabate J, Minguillon C, Solanas AM, Grifoll M (2001) Identification of novel metabolites in the degradation of pyrene by Mycobacterium sp. strain AP1: actions of the isolate on two-and three-ring polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5497–5505

    Article  CAS  Google Scholar 

  • Yenn R, Borah M, Boruah HP, Roy AS, Baruah R, Saikia N, Sahu OP, Tamuli AK (2014) Phytobioremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation. Int J Phytoremediation 16(7–12):909–925

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors also acknowledge Azyme Biosciences Pvt. Ltd., Bangalore for providing outsourcing facility for GLC analysis and Pentavalent Bio Sciences Pvt. Ltd., Bangalore for 16S rDNA gene sequencing analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajit Borah.

Ethics declarations

Conflict of interest

Authors declare that the gas chromatogram presented as control (Fig. 5a) is used by us in other experiments also (Basumatary et al. 2020) and may be used in future by properly acknowledging the source.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, B., Das, I., Gogoi, M. et al. Bioremediation of motor oil-contaminated soil and water by a novel indigenous Pseudomonas otitidis strain DU13 and characterization of its biosurfactant. 3 Biotech 12, 68 (2022). https://doi.org/10.1007/s13205-022-03133-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-022-03133-2

Keywords

Navigation