Skip to main content

Advertisement

Log in

Silver nanoparticles for biolistic transformation in Nicotiana tabacum L.

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present study reports the use of silver nanoparticles as a gene carrier, substituting gold microcarrier for biolistic gene delivery in Nicotiana tabacum L. Efficiency of biolistic transformation using silver nanoparticles (100 nm) was compared with that of gold microcarriers (0.6 micron) under varying helium pressure (450 psi, 650 psi, 900 psi and 1100 psi) and target distance (6 cm and 9 cm). Among the different concentrations (0.01–100 mgL−1) of silver nanoparticles tried, 10 mgL−1 produced the highest number of transient GUS expression (30) with statistical significance. Helium pressure of 650 and target distance of 9 cm, and 900 psi pressure and 6 cm distance resulted in the highest GUS expression with gold microcarriers and silver nanoparticles, respectively. Transformation efficiency was significantly higher with silver nanoparticles than gold microparticles as carriers resulting in a reduction up to 37.5-fold on the cost of consumables. Regeneration efficiencies of tissues bombarded with gold microcarriers and silver nanoparticles were 62.5% and 70.83%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almasi MA, Aghapour-Ojaghkandi M, Bagheri K, Ghazvini M, Hosseyni-Dehabadi SM (2015) Comparison and evaluation of two diagnostic methods for detection of npt II and GUS genes in Nicotiana tabacum. Appl Biochem Biotechnol 175(8):3599–3616

    Article  CAS  Google Scholar 

  • Chang FP, Kuang LY, Huang CA, Jane WN, Hung Y, Yue-ie CH, Mou CY (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1(39):5279–5287

    Article  CAS  Google Scholar 

  • Chen PY, Wang CK, To SSCKY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breeding 11(4):287–293

    Article  CAS  Google Scholar 

  • Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breeding 7(1):25–33

    Article  CAS  Google Scholar 

  • Dixit S, Alam S, Sahoo S (2016) In vitro selection and plant regeneration of CaCl2 & Mn-tolerant plants from leaf callus of Nicotiana tabacum L. Imp J Interdiscip Res 2(7):170–174

    Google Scholar 

  • Dizaj SM, Jafari S, Khosroushahi AY (2014) A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett 9(1):1–9

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle J (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66(17):2873–2896

    Article  CAS  Google Scholar 

  • Ikea J, Ingelbrecht I, Uwaifo A, Thottappilly G (2003) Stable gene transformation in cowpea (Vigna unguiculata L. Walp.) using particle gun method. Afr J Biotechnol 2(8):211–218

    Article  CAS  Google Scholar 

  • Jaiswal S, Bhattacharya K, McHale P, Duffy B (2015) Dual effects of β-cyclodextrin-stabilised silver nanoparticles: enhanced biofilm inhibition and reduced cytotoxicity. J Mater Sci Mater Med 26(1):52

    Article  Google Scholar 

  • Kamble S, Misra HS, Mahajan SK, Eapen S (2003) A protocol for efficient biolistic transformation of mothbean Vigna aconitifolia L. Jacq. Marechal. Plant Mol Biol Reporter 21(4):457–458

    Article  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci 95(12):7203–7208

    Article  CAS  Google Scholar 

  • Li WR, Xie XB, Shi QS, Zeng HY, You-Sheng OY, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85(4):1115–1122

    Article  CAS  Google Scholar 

  • Liu J, Nannas NJ, Fu FF, Shi J, Aspinwall B, Parrott WA, Dawe RK (2019) Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell 31(2):368–383

    Article  CAS  Google Scholar 

  • Mailander V, Landfester K (2009) Interaction of nanoparticles with cells. Biomacromol 10(9):2379–2400

    Article  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Sun W, Moeller L, Fang N, Trewyn BG, Lin VS, Wang K (2012) Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. Small 8(3):413–422

    Article  CAS  Google Scholar 

  • Mortazavi SE, Zohrabi Z (2018) Biolistic co-transformation of rice using gold nanoparticles. Iran Agric Res 37(1):75–82

    Google Scholar 

  • Nagamani G, Alex S, Soni KB, Anith KN, Viji MM, Kiran AG (2019) A novel approach for increasing transformation efficiency in E. coli DH5α cells using silver nanoparticles. 3 Biotech 9(3):1–7

    Article  Google Scholar 

  • O’Brien JA, Lummis SC (2006) Biolistic transfection of neuronal cultures using a hand-held gene gun. Nat Protoc 1(2):977

    Article  CAS  Google Scholar 

  • O’Brien JA, Lummis SC (2011) Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol 11(1):1–6

    Article  Google Scholar 

  • Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119

    Article  Google Scholar 

  • Perez-Barranco G, Torreblanca R, Padilla IM, Sánchez-Romero C, Pliego-Alfaro F, Mercado JA (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell Tissue Organ Culture 97(3):243–251

    Article  CAS  Google Scholar 

  • Sailaja M, Tarakeswari M, Sujatha M (2008) Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds. Plant Cell Rep 27(9):1509–1519

    Article  CAS  Google Scholar 

  • Sharma S, Javed MN, Pottoo FH, Rabbani SA, Barkat M, Sarafroz M, Amir M (2019) Bioresponse inspired nanomaterials for targeted drug and gene delivery. Pharmaceut Nanotechnol 7(3):220–233

    Article  CAS  Google Scholar 

  • Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimisation of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue Organ Cult 75(1):1–8

    Article  CAS  Google Scholar 

  • Taha AM, Wagiran A, Ghazali H, Huyop F, Parveez GK (2009) Optimization and transformation of garden balsam, Impatiens balsamina, mediated by microprojectile bombardment. Biotechnology 8(1):1–12

    CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  Google Scholar 

  • Wang X, Yang F, Zhao J, Xu Y, Mao D, Zhu X, Luo Y, Alvarez PJ (2018) Bacterial exposure to ZnO nanoparticles facilitates horizontal transfer of antibiotic resistance genes. NanoImpact 10(4):61–67

    Article  CAS  Google Scholar 

  • Yasybaeva G, Vershinina Z, Kuluev B, Mikhaylova E, Baymiev A, Chemeris A (2017) Biolistic-mediated plasmid-free transformation for induction of hairy roots in tobacco plants. Plant Root 11:33–39

    Article  CAS  Google Scholar 

  • Zuraida AR, RahinizaNurul KHMR, Roowi S, Zamri Z, Subramaniam S (2010) Factors affecting delivery and transient expression of gusA gene in Malaysian indica rice MR 219 callus via biolistic gun system. Afr J Biotech 9(51):8810–8818

    CAS  Google Scholar 

Download references

Acknowledgements

Research facilities provided by Kerala Agricultural University is gratefully acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapna Alex.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumari, N., Alex, S., Soni, K.B. et al. Silver nanoparticles for biolistic transformation in Nicotiana tabacum L.. 3 Biotech 11, 497 (2021). https://doi.org/10.1007/s13205-021-03043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-03043-9

Keywords

Navigation