Skip to main content

Advertisement

Log in

Kinetics and equilibrium study for the biosorption of lanthanum by Penicillium simplicissimum INCQS 40,211

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Lanthanum (La) is a light rare-earth element that plays an essential role in manufacturing technological products, clean technologies, medical products, electron cathodes, scintillators, fluorescent lamps, and fertilizers. This study is the first investigation of La3+ biosorption using inactive lyophilized biomass from Penicillium simplicissimum INCQS 40,211. The maximum sorption capacity (qmax) for P. simplicissimum was 7.81 mg g−1. La 3+ biosorption followed the Freundlich model, where the biosorption system possibly multilayer coverage of P. simplicissimum by lanthanum ions. The kinetic data for the adsorption process obeyed a pseudo-second-order (R2 > 0.92), indicating chemical sorption. The results indicated that inactive lyophilized biomass from Penicillium simplicissimum INCQS 40211are an excellent candidate for removing light rare-earth elements from aquatic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agathokleous E, Kitao M, Calabrese EJ (2019) Hormetic dose responses induced by lanthanum in plants. Environ Pollut 244:332–341

    CAS  PubMed  Google Scholar 

  • Aksu Z, Sag Y, Kutsal T (1992) The biosorption of copper by C. vulgaris and Z. ramigera. Environ Technol 13(6):579–586

    CAS  Google Scholar 

  • Arivoli S, Martin P, Deva P, Thenkuzhali M (2007) Adsorption of chromium ion by acid-activated low-cost carbon. Electr J Environ Agric Food Chem 6(9):2323–2340

    CAS  Google Scholar 

  • Bakatula EN, Straker CJ, Cukrowska EM, Weiersbye IM, Mihaly-Cozmuta L, Tutu H (2015b) A zeoponic system modified with Penicillium simplicissimum for the removal of trace elements from aqueous solutions and gold mine leachates. J Geochemical Explor 156:34–43

    CAS  Google Scholar 

  • Bakatula EN, Cukrowska EM, Straker CJ, Weiersbye IM, Tutu H (2015)

  • Balaram V (2019) Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci Front 10(4):1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005

    Article  CAS  Google Scholar 

  • Bergsten-Torralba LR, Nishikawa MM, Baptista DF, Magalhães DP, Da Silva M (2009) Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment. Braz J Microbiol 40(4):808–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergsten-Torralba LR, Magalhães DP, Giese EC, Nascimento CRS, Pinho JVA, Buss DF (2020) Toxicity of three rare earth elements, and their combinations to algae, microcrustaceans, and fungi. Ecotoxicol Environ Saf. 201

  • Chen SH, Cheow YL, Ng SL, Ting ASY (2017) A novel study based on adaptive metal tolerance behavior in fungi and SEM-EDX analysis. J Hazard Mater 334:1321–1341

    Google Scholar 

  • Chen SH, Cheow YL, Ng SL, Ting ASY (2018) Influence of dyes on metal removal: a study using live and dead cells of Penicillium simplicissimum in single-metal and dye-metal mixtures. Water Air Soil Poll 229(8):3931

    Google Scholar 

  • Chen SH, Cheow YL, Ng SL, Ting ASY (2019) Mechanisms for metal removal established via electron microscopy and spectroscopy: a case study on metal tolerant fungi Penicillium simplicissimum. J Hazard Mater 362:394–402

    CAS  PubMed  Google Scholar 

  • Chen SH, Cheow YL, Ng SL, Ting ASY (2020a) removal of triphenylmethane dyes in single-dye and dye-metal mixtures by live and dead cells of metal-tolerant Penicillium simplicissimum. Sep Sci Technol 55(13):2410–2420

    CAS  Google Scholar 

  • Chen SH, Cheow YL, Ng SL, Ting ASY (2020b) Bioaccumulation and biosorption activities of indoor metal-tolerant Penicillium simplicissimum for removal of toxic metals. Int J Environ Res 14(2):235–242

    CAS  Google Scholar 

  • Da Silva M, Umbuzeiro GA, Pfenning LH, Canhos VP, Esposito E (2003) Filamentous fungi isolated from estuarine sediments contaminated with industrial discharges. Soil Sediment Contam 12(3):345–356

    Google Scholar 

  • Dabrowski A (2001) Adsorption-from theory to practice. Adv Coll Inter Sci 93:135–224

    CAS  Google Scholar 

  • Das N, Das D (2013) Recovery of rare earth metals through biosorption: an overview. J Rare Earths 31(10):933–943

    CAS  Google Scholar 

  • Dev S, Sachan A, Dehghani F, Ghosh T, Br B, Aggarwal S (2020) Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: a review. Chem Eng J 397:124596

    CAS  Google Scholar 

  • Di Caprio F, Altimari P, Zanni E, Uccelletti D, Toro L, Pagnanelli F (2016) Lanthanum biosorption by different Saccharomyces cerevisiae strains. Chem Eng Trans 49:37–42

    Google Scholar 

  • Fan T, Liu Y, Feng B, Zeng G, Yang C, Zhou M (2008) Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics. J Hazard Mater 160(2–3):655–661

    CAS  PubMed  Google Scholar 

  • Fiol N, Villaescusa I (2009) Determination of sorbent point zero charge: usefulness in sorption studies. Environ Chem Lett 7:79–84

    CAS  Google Scholar 

  • Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14

    CAS  PubMed  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    CAS  Google Scholar 

  • Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:384–410

    Google Scholar 

  • Furuhashi Y, Honda R, Noguchi M, Hara-Yamamura H, Kobayashi S, Higashimine K, Hasegawa H (2019) Optimum conditions of pH, temperature and preculture for biosorption of europium by microalgae Acutodesmus acuminatus. Biochem Eng J 143:58–64

    CAS  Google Scholar 

  • Gad NS (2016) Biosorption of rare earth elements using biomass of Sargassum on El-Atshan Trachytic sill, Central Eastern Desert Egypt. Egyptian J Petrol 25(4):445–451

    Google Scholar 

  • Giese EC (2019) Functionalized nano diamonds: improving biomedical features using rare-earth elements. Biomed J Sci Tech Res 22:17035–17036

    Google Scholar 

  • Giese EC (2020) Biosorption as green technology for the recovery and separation of rare earth elements. World J Microbiol Biotechnol 36:52

    CAS  PubMed  Google Scholar 

  • Giese EC, Jordão CS (2019) Biosorption of lanthanum and samarium by chemically modified Bacillus subtilis free cells. Appl Wat Sci 9:182

    Google Scholar 

  • Giese EC, Barbosa AM, Dekker RFH (2019) Biosorption of lanthanum and samarium by viable and autoclaved mycelium of Botryosphaeria rhodina MAMB-05. Biotechnol Progr 36:e2783

    Google Scholar 

  • Giese EC, Silva DDV, Costa AFM, Almeida SGC, Dussan KJ (2020) Immobilized microbial nanoparticles for biosorption. Crit Rev Biotechnol 40(5):653–666

    CAS  PubMed  Google Scholar 

  • Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sust Mater Technol 9:10–40

    Google Scholar 

  • Gwenzi W, Mangori L, Danha C, Chaukura N, Dunjana N, Sanganyado E (2018) Sources, behaviour, and environmental and human health risks of high-technology rare earth elements emerging contaminants. Sci Total Environ 636:299–313

    CAS  PubMed  Google Scholar 

  • Heidelmann GP, Roldao TM, Egler SG, Nascimento M, Giese EC (2017) Use of microalgae biomass for lanthanide biosorption. Holos 6:170–179

    Google Scholar 

  • Hennebel T, Boon N, Maes S, Lenz M (2015) Biotechnologies for critical raw material recovery from primary and secondary sources: R and D priorities and future perspectives. New Biotechnol 32(1):121–117

    CAS  Google Scholar 

  • Ho YS, Makay G (1998) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    CAS  Google Scholar 

  • Iskandar NL, Zainudin N, Tan SG (2011) Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J Environ Sci 23(5):824–830

    CAS  Google Scholar 

  • Langmuir I (1908) Adsorption of gases on plane surfaces of glass, mica, and platinum. J Amer Chem Soc 40:1361–1403

    Google Scholar 

  • Li X, Chen Z, Chen Z, Zhang Y (2013) A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province Southeast China. Chemosphere 93(6):12401246

    Google Scholar 

  • Palmieri MC, Melnikov P, Garcia OJ (2000) Neodymium biosorption from acidic solutions in batch system. Proc Biochem 36:441–444

    CAS  Google Scholar 

  • Pan X-H, Wu W, Lu J, Chen Z, Li L, Rao W, Guan X (2017) Biosorption and extraction of europium by Bacillus thuringiensis. Innorg Chem Commun 75:21–24

    CAS  Google Scholar 

  • Ravelet C, Krivobok S, Sage L, Steiman R (2000) Biodegradation of pyrene by sediment fungi. Chemosphere 40(5):557–563

    CAS  PubMed  Google Scholar 

  • Rim KT (2016) Effects of rare earth elements on the environment and human health: a literature review. Toxicol Environ Health Sci 8(3):189–200

    Google Scholar 

  • Shakya M, Sharma P, Meryem SS, Mahmood Q, Kumar A (2016) Heavy metal removal from industrial wastewater using fungi: uptake mechanism and biochemical aspects. J Environ Eng 142:9

    Google Scholar 

  • Shamim S (2008), Biosorption of heavy metals, In: Derco J; Vrana B, Biosorption, IntechOpen

  • Song W, Liang J, Wen T, Wang X, Hu J, Hayat T (2016) Accumulation of Co(II) and Eu(III) by the mycelia of Aspergillus niger isolated from radionuclide-contaminated soils. Chem Eng J 15(304):186–193

    Google Scholar 

  • Souza ACSP, Nascimento M, Giese EC (2019) Challenges for the sustainable extraction of rare earth-bearing ores. Holos 1:1–9

    Google Scholar 

  • Squadrone S, Brizio P, Stella C, Mantia M, Battuello M, Nurra N (2019) Rare earth elements in marine and terrestrial matrices of Northwestern Italy: implications for food safety and human health. Sci Total Environ 660:1383–1391

    CAS  PubMed  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41(18):4017–4029

    CAS  PubMed  Google Scholar 

  • Wang J, Guo X (2020) Adsorption kinetic models: physical meanings, applications, and solving methods. J Hazard Mater 390:122156

    CAS  PubMed  Google Scholar 

  • Wang W, Xu C, Jin Y, Zhang Z, Yan R, Zhu D (2020) The accumulation of rare-earth yttrium ions by Penicillium sp. ZD28. AMB Express 10(1):8

    Google Scholar 

  • Weber WJ Jr, Morris JC (1963) Kinetics of adsorption on carbon from solution. J San Eng Div 89:31–39

    Google Scholar 

  • Xu S, Zhang S, Chen K, Han J, Liu H, Wu K (2011) Biosorption of La3+ and Ce3+ by Agrobacterium sp. HN1. J Rare Earths 29(3):265–270

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq)-Brazil for financial support. LR Bergsten-Torralba is thankful to CAPES-Brazil for fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen C. Giese.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergsten-Torralba, L.R., Nascimento, C.R.S., Buss, D.F. et al. Kinetics and equilibrium study for the biosorption of lanthanum by Penicillium simplicissimum INCQS 40,211. 3 Biotech 11, 460 (2021). https://doi.org/10.1007/s13205-021-03004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-03004-2

Keywords

Navigation