Skip to main content
Log in

Weighted gene co-expression network analysis unveils gene networks regulating folate biosynthesis in maize endosperm

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Folates are essential elements for human growth and development, and their deficiency can lead to serious disorders. Waxy maize is a rich source of folates; however, the regulatory mechanism underlying folate biosynthesis in the endosperm remains unclear. Here, we examined changes in the folate content of maize endosperm collected at 15, 18, 21, 24, and 27 days after pollination (DAP) using liquid chromatograph-mass spectrometry and identified genes related to folate biosynthesis using transcriptome sequencing data. The results showed that 5-methyl-tetrahydrofolate and 5,10-methylene tetrahydrofolate were the main storage forms of folates in the endosperm, and their contents were relatively high at 21–24 days. We also identified 569, 3183, 4365, and 5513 differentially expressed genes (DEGs) in different days around milk stage. Functional annotation revealed 518 transcription factors (TFs) belonging to 33 families exhibiting specific expression in at least one sampling time. The key hub genes involved in folate biosynthesis were identified by weighted gene co-expression network analysis. In total, 24,976 genes were used to construct a co-expression network with 29 co-expression modules, among which the brown and purple modules were highly related to folate biosynthesis. Further, 187 transcription factors in the brown and purple modules were considered potential transcription factors related to endosperm folate biosynthesis. These results may improve the understanding of the molecular mechanism underlying folate biosynthesis in waxy maize and lead to the development of nutritionally fortified varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data accessibility

Raw sequencing data were deposited in the NCBI SRA database (accession number: PRJNA660527).

References

  • An JP, Qu FJ, Yao JF, Wang XN, You CX, Wang XF, Hao YJ (2017) The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic Res 4:17023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee RV, Matthews RG (1990) Cobalamin-dependent methionine synthase. Faseb J 4:1450–1459

    Article  PubMed  CAS  Google Scholar 

  • Basset GJC, Quinlivan EP, Gregory JF, Hanson AD (2005) Folate synthesis and metabolism in plants and prospects for biofortification. Crop Sci 45:449–453

    Article  CAS  Google Scholar 

  • Bekaert S, Storozhenko S, Mehrshahi P, Bennett MJ, Lambert W, Iii J, Schubert K, Hugenholtz J, Straeten D, Hanson AD (2008) Folate biofortification in food plants. Trends Plant Sci 13:28–35

    Article  PubMed  CAS  Google Scholar 

  • Blancquaert D, Storozhenko S, Loizeau K, De Steur H, De Brouwer V, Viaene J, Ravanel S, Rebeille F, Lambert W, Dominique VDS (2010) Folates and folic acid: from fundamental research toward sustainable health. Crit Rev Plant Sci 29:14–35

    Article  CAS  Google Scholar 

  • Blancquaert D, Van Daele J, Strobbe S, Kiekens F, Storozhenko S, De Steur H, Gellynck X, Lambert W, Stove C, Van Der Straeten D (2015) Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nat Biotechnol 33:1076–1078

    Article  PubMed  CAS  Google Scholar 

  • Bouis HE (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:491S-494S

    Article  PubMed  CAS  Google Scholar 

  • Chen MR (2016) Cloning and functional characterization of maize 5-formyltetrahydrofolate cycloligase in folate metabolism. Chin Acad Agric Sci

  • Dieter B, Hans DS, Xavier G, Dominique VDS (2014) Present and future of folate biofortification of crop plants. J Exp Bot 65:895–906

    Article  CAS  Google Scholar 

  • Don MSRB, Henry J (2008) GTP cyclohydrolase 1 expression and folate accumulation in the developing wheat seed. J Cereal Sci 48:503–512

    Article  CAS  Google Scholar 

  • Dong W, Cheng ZJ, Lei CL, Wang XL, Wang JL, Wang J, Wu FQ, Zhang X, Guo XP, Zhai HQ, Wan JM (2014) Overexpression of folate biosynthesis genes in rice (Oryza sativa L.) and evaluation of their impact on seed folate content. Plant Foods Hum Nutr 69:379–385

    Article  PubMed  CAS  Google Scholar 

  • Frank F, Manfred K, Stefan B (2000) Structural and functional analysis of the riboflavin synthesis genes encoding GTP cyclohydrolase II (ribA), DHBP synthase (ribBA), riboflavin synthase (ribC), and riboflavin deaminase/reductase (ribD) from Helicobacter pylori strain P1. Fems Microbiol Lett 191:191–197

    Article  Google Scholar 

  • Guo W, Lian T, Wang B, Guan J, Yuan D, Wang H, Azam FMS, Wan X, Wang W, Liang Q (2019a) Genetic mapping of folate QTLs using a segregated population in maize. J Integr Plant Biol 61:675–690

    Article  PubMed  CAS  Google Scholar 

  • Guo WZ, Lian T, Wang BB, Guan JT, Yuan D, Wang H, Azam FMS, Wan X, Wang WX, Liang QJ (2019b) Genetic mapping of folate QTLs using a segregated population in maize. J Integr Plant Biol 61:1–17

    Article  CAS  Google Scholar 

  • Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Biol 52:119–137

    Article  CAS  Google Scholar 

  • Hua P, He XJ, Gao J, Ma HX, Zhang ZM, Shen YO, Pan GT, Lin HJ (2015) Transcriptomic changes during maize roots development responsive to Cadmium (Cd) pollution using comparative RNAseq-based approach. Biochem Biophys Res Commun 464:1040–1047

    Article  CAS  Google Scholar 

  • Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Shinozaki K (2008) The Arabidopsis MALE STERILITY1 (MS1) gene encoding a PHD-type transcription factor regulates pollen exine development. Plant Cell 19:3549–3562

    Article  CAS  Google Scholar 

  • Jian W, Cao H, Yuan S, Liu Y, Lu J, Lu W, Li N, Wang J, Zou J, Tang N (2019) SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Hortic Res 6:22–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang L, Strobbe S, Straeten D, Zhang C (2020) Regulation of plant vitamin metabolism: backbone of biofortification for the alleviation of hidden hunger. Mol Plant 14:40–60

    Article  PubMed  CAS  Google Scholar 

  • Lian T, Guo W, Chen M, Li J, Liang Q, Liu F, Meng H, Xu B, Chen J, Zhang C (2015) Genome-wide identification and transcriptional analysis of folate metabolism-related genes in maize kernels. BMC Plant Biol 15:204–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang YH, Cai B, Chen F, Wang G, Wang M, Zhong Y, Cheng ZM (2014) Construction and validation of a gene co-expression network in grapevine (Vitis vinifera. L.). Hortic Res 1:14040–14048

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang Q, Wang K, Liu X, Riaz B, Jiang L, Wan X, Ye X, Chunyi Z (2019) Improved folate accumulation in genetically modified maize and wheat. J Exp Bot 70:1539–1551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang QJ, Wang K, Shariful I, Ye XG, Zhang CY (2020) Folate content and retention in wheat grains and wheat-based foods: effects of storage, processing, and cooking methods. Food Chem 333:127459

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liu CX, Li ZX, Xia M, Jiang HY, Cheng BJ, Zhou JL, Zhu SW (2011) Overexpression of a plant homedomain(PHD)-finger transcription factor, OsPHD1, can enhance stress tolerance in rice. J Agric Biotechnol 19:462–469

    CAS  Google Scholar 

  • Liu S, Zenda T, Dong A, Yang Y, Wang N, Duan H (2021) Global transcriptome and weighted gene co-expression network analyses of growth-stage-specific drought stress responses in maize. Front Genet 12:645443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma J, Zhang DF, Cao YY, Wang LF, Li JJ, Thomas L, Wang TY, Li Y, Li HY (2018) Heterosis-related genes under different planting densities in maize (Zea mays L.). J Exp Bot 69:5077–5087

    Article  PubMed  CAS  Google Scholar 

  • Naqvi S, Zhu CF, Farre G, Ramessar K, Bassie L Jr, Breitenbach DP, Conesa GR, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767

    Article  PubMed  PubMed Central  Google Scholar 

  • Nepolean TFH, Mohan S, Shiriga K, Mittal S, Sharma R, Singh RK, Gupta HS (2013) Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize (Zea mays L.) under waterlogging stress. PLoS ONE 8:70433–70444

    Article  CAS  Google Scholar 

  • Qu JZ, Xu ST, Tian XK, Li T, Guo DW (2019) Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents. PeerJ 7:7528–7556

    Article  Google Scholar 

  • Rocío IDG, Jesse FG, Andrew DH (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci USA 104:4218–4222

    Article  CAS  Google Scholar 

  • Saini RK, Nile SH, Keum YS (2016) Folates: chemistry, analysis, occurrence, biofortification and bioavailability. Food Res Int 89:1–13

    Article  PubMed  CAS  Google Scholar 

  • Scott J, Rébeillé F, Fletcher J (2000) Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J Sci Food Agric 80:795–824

    Article  CAS  Google Scholar 

  • Sen Gupta D, Thavarajah D, Knutson P, Thavarajah P, Mcgee RJ, Coyne CJ, Kumar S (2013) Lentils (Lens culinaris L.), a rich source of folates. J Agric Food Chem 61:7794–7799

    Article  PubMed  CAS  Google Scholar 

  • Shan QJ, Liu JH, Li W, Wang H, Hu XD, Li T, Hu JG, Guo XB, Liu RH (2019) Comprehensive evaluation of biosynthesis, accumulation, regulation of folate and vitamin C in waxy maize (Zea mays L. var. ceratina) with kernel development. J Cereal Sci 87:215–224

    Article  CAS  Google Scholar 

  • Shane B (1989) Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 45:263–335

    Article  PubMed  CAS  Google Scholar 

  • Storozhenko S, De Brouwer V, Volckaert M, Navarrete O, Blancquaert D, Zhang GF, Lambert W, Dominique VDS (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25:1277–1279

    Article  PubMed  CAS  Google Scholar 

  • Strobbe S, Van Der Straeten D (2017) Folate biofortification in food crops. Curr Opin Biotechnol 44:202–211

    Article  PubMed  CAS  Google Scholar 

  • Susan AG, McIntosh SR, Henry R (2008) A transgenic cereal crop with enhanced folate: rice expressing wheat HPPK/DHPS. In: 11th international wheat genetics symposium, p 299

  • Tai YL, Liu C, Yu SW, Hua Y, Sun JM, Guo CX, Bei H, Liu ZY, Yi Y, Xia EH (2018) Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis). BMC Genom 19:616–618

    Article  CAS  Google Scholar 

  • Tariq A, Orsomando G, Mehrshahi P, Lara-Núñez A, Bennett MJ, Gregory JF III, Andrew HD (2010) A central role for gamma-glutamyl hydrolases in plant folate homeostasis. Plant J Cell Mol Biol 64:256–266

    Article  CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wickham H, Chang W, Studio R (2016) ggplot2: create elegant data visualisations using the grammar of graphics. Book of abstracts

  • Xie ZL, Nolan TM, Jiang H, Yin YH (2019) AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front Plant Sci 10:228–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Xing-Bin X, Shen L, Rui-Fen Z, Jing Z, Ying-Chun C (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35:1884–1897

    Article  CAS  Google Scholar 

  • Xu WH, Shrubsole MJ, Xiang YB, Cai QY, Zhao GM, Ruan ZX, Cheng JR, Zheng W, Shu XO (2007) Dietary folate intake, MTHFR genetic polymorphisms, and the risk of endometrial cancer among Chinese women. Cancer Epidemiol Biomark Prev 16:281–287

    Article  CAS  Google Scholar 

  • Xu Y, Magwanga RO, Yang X, Jin D, Cai X, Hou Y, Wei Y, Zhou Z, Wang K, Liu F (2020) Genetic regulatory networks for salt-alkali stress in Gossypium hirsutum with differing morphological characteristics. BMC Genom 21:15–33

    Article  CAS  Google Scholar 

  • Yang YX, Sang ZQ, Xu C, Dai WS, Zou C (2019) Identification of maize flowering gene co-expression modules by WGCNA. Acta Agron Sin 45:161–174

    Article  Google Scholar 

  • Yi F, Wei Gu, Chen J, Song N, Gao X, Zhang X, Zhou Y, Ma X, Song W, Zhao H, Esteban E, Pasha A, Provart NJ, Laia J (2019) High-temporal-resolution transcriptome landscape of early maize seed development. Plant Cell 31:947–992

    Article  CAS  Google Scholar 

  • Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol 16:284–287

    Article  CAS  Google Scholar 

  • Yuan Y, Zhang B, Tang X, Zhang J, Lin J (2020) Comparative transcriptome analysis of different dendrobium species reveals active ingredients-related genes and pathways. Int J Mol Sci 21:861

    Article  PubMed Central  CAS  Google Scholar 

  • Zhan JP, Thakare D, Ma C, Lloyd A, Nixon NM, Arakaki AM, Burnett WJ, Logan KO, Wang DF, Wang XF, Drews GN, Yadegari R (2015) RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell 27:513–531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Hirsch CN, Sekhon RS, Natalia DL, Kaeppler SM (2016) Evidence for maternal control of seed size in maize from phenotypic and transcriptional analysis. J Exp Bot 67:1907–1917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao R, Song X, Yang N, Chen L, Zhao K (2020) Expression of the subgroup IIIf bHLH transcription factor CpbHLH1 from Chimonanthus praecox (L.) in transgenic model plants inhibits anthocyanin accumulation. Plant Cell Rep 39(7):891–907

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to our colleagues who have shared their knowledge and reagents, at the State Shanghai Key Laboratory of Agricultural Genetics and Breeding (Shanghai Academy of Agricultural Sciences). They also thank the editor and reviewers for critical comments and thoughtful suggestions.

Funding

The project was supported by the funding of Shanghai Agriculture Applied Technology Development Program (Z20180103), Shanghai Agricultural Science Committee Youth Talents Development Plan No. 2018 (1-34), Shanghai Academy of Agricultural Sciences Youth Talent Program (ZP21211), Shanghai Engineering Technology Research Center of Specialty Maize (20DZ2255300), and Shanghai Science and Technology Commission of the belt and road project (20310750500).

Author information

Authors and Affiliations

Authors

Contributions

XT and LS designed the experiments. LS, DY, GW, and CW performed the experiments. DY, PL, and YS analyzed the data. JW and BL contributed to the RNA-seq data accessibility via the FileZilla. LS and DY wrote the article. HZ provided the seeds. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xueming Tang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Yu, D., Zheng, H. et al. Weighted gene co-expression network analysis unveils gene networks regulating folate biosynthesis in maize endosperm. 3 Biotech 11, 441 (2021). https://doi.org/10.1007/s13205-021-02974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02974-7

Keywords

Navigation