Skip to main content

Advertisement

Log in

Tryptophan interferes with the quorum sensing and cell surface hydrophobicity of Staphylococcus aureus: a promising approach to inhibit the biofilm development

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Staphylococcus aureus, a Gram-positive bacterium has been implicated in a plethora of human infections by virtue of its biofilm-forming ability. Inhibition in microbial biofilm formation has been found to be a promising approach towards compromising microbial pathogenesis. In this regard, various natural and synthetic molecules have been explored to attenuate microbial biofilm. In this study, the role of an amino acid, L-tryptophan was examined against the biofilm-forming ability of S. aureus. The compound did not execute any antimicrobial characteristics, instead, showed strong antibiofilm activity with the highest biofilm inhibition at a concentration of 50 µg/mL. Towards understanding the underlying mechanism of the same, efforts were given to examine whether tryptophan could inhibit biofilm formation by interfering with the quorum-sensing property of S. aureus. A molecular docking analysis revealed an efficient binding between the quorum-sensing protein, AgrA, and tryptophan. Moreover, the expression of the quorum-sensing gene (agrA) got significantly reduced under the influence of the test compound. These results indicated that tryptophan could interfere with the quorum-sensing property of the organism thereby inhibiting its biofilm formation. Further study revealed that tryptophan could also reduce the cell surface hydrophobicity of S. aureus by downregulating the expression of dltA. Moreover, the tested concentrations of tryptophan did not show any significant cytotoxicity. Hence, tryptophan could be recommended as a potential antibiofilm agent to manage the biofilm-associated infections caused by S. aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and its supplementary information file. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Arciola CR, Campoccia D, Ravaioli S, Montanaro L (2015) Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 5:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bronner S, Monteil H, Prévost G (2004) Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol Rev 28:183–220

    Article  CAS  PubMed  Google Scholar 

  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty P, Joardar S, Ray S, Biswas P, Maiti D, Tribedi P (2018a) 3, 6-Di (pyridin-2-yl)-1, 2, 4, 5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation. Folia Microbiol 63:763–772

    Article  CAS  Google Scholar 

  • Chakraborty P, Daware AV, Kumari M, Chatterjee A, Bhattacharyya D, Mitra G, Akhter Y, Bhattacharjee S, Tribedi P (2018b) Free tryptophan residues inhibit quorum sensing of Pseudomonas aeruginosa: a potential approach to inhibit the development of microbial biofilm. Arch Microbiol 200:1419–1425

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Dastidar D, Paul P, Dutta S, Basu D, Sharma S, Basu S, Sarker R, Sen A, Sarkar A, Tribedi P (2020) Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: a potential approach for sustainable management of biofilm. Arch Microbiol 202:623–635

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Paul P, Kumari M, Bhattacharjee S, Singh M, Maiti D, Dastidar DG, Akhter Y, Kundu T, Tribedi DA, P, (2021) Attenuation of Pseudomonas aeruginosa biofilm by thymoquinone: an individual and combinatorial study with tetrazine-capped silver nanoparticles and tryptophan. Folia Microbiol 66(2):255–271

    Article  CAS  Google Scholar 

  • Ciofu O, Tolker-Nielsen T (2019) Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents-How P. aeruginosa can escape antibiotics. Front Microbiol 10:913

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa O, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636

    Article  PubMed  PubMed Central  Google Scholar 

  • Cramton SE, Gerke C, Schnell NF, Nichols WW, GötzF, (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das MC, Das A, Samaddar S, Daware AV, Ghosh C, Acharjee S, Sandhu P, Jawed JJ, De UC, Majumdar S, Gupta SKD (2018) Vitexin alters Staphylococcus aureus surface hydrophobicity to interfere with biofilm formation. bioRxiv. https://doi.org/10.1101/301473

    Article  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9:e111289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  • Gad GFM, El-Feky MA, El-Rehewy MS, Hassan MA, Abolella H, Abd El-Baky RM (2009) Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J Infect Dev Ctries 3(05):342–351

    CAS  PubMed  Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Pro Nat Sci 18:1049–1056

    Article  CAS  Google Scholar 

  • Geisinger E, Muir TW, Novick RP (2009) Agr receptor mutants reveal distinct modes of inhibition by staphylococcal auto inducing peptides. Proc Natl Acad Sci USA 106:1216–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Qureshi A, Purohit HJ (2019) D-Tryptophan governs biofilm formation rates and bacterial interaction in P. mendocina and S. aureus. J Biosci 44(1):3

    Article  PubMed  CAS  Google Scholar 

  • Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104

    CAS  Google Scholar 

  • Goel S, Mishra P (2018) Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation. Appl Microbiol Biotechnol 102(4):1955–1967

    Article  CAS  PubMed  Google Scholar 

  • Gross M, Cramton SE, Götz F, Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention a journey to break the wall: a review. Arch Microbiol 198:1–15

    Article  CAS  PubMed  Google Scholar 

  • Heilmann C, Götz F (1998) Further characterization of Staphylococcus epidermidis transposon mutants deficient in primary attachment or intercellular adhesion. Zentralblattfür Bakteriologie 287:69–83

    Article  CAS  Google Scholar 

  • Heilmann C, Gerke C, Perdreau-Remington F, Götz F (1996) Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 64:277–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Molec Graph 14:33–38

    Article  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  CAS  PubMed  Google Scholar 

  • Koenig RL, Ray JL, Maleki SJ, Smeltzer MS, Hurlburt BK (2004) Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J Bacteriol 186(22):7549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouidhi B, Zmantar T, Hentati H, Bakhrouf A (2010) Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries. Microb Pathog 49:14–22

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2:288–356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Ye Y, Ling N, Wu Q, Zhang J (2015) Inhibitory effects of D-Tryptophan on biofilm development by the foodborne Cronobacter sakazakii. Int Dairy J 49:125–129

    Article  CAS  Google Scholar 

  • Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1, 6-linked glycosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maric S, Vranes J (2007) Characteristics and significance of microbial biofilm formation. Period Biol 109:115–121

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Moreira CS, Silva ACJA, Novais JS, SáFigueiredo AM, Ferreira VF, Rocha DR, Castro HC (2016) Searching for a potential antibacterial lead structure against bacterial biofilms among new naphthoquinone compounds. J Appl Microbiol 122:651–662

    Article  CAS  Google Scholar 

  • Mukherjee K, Tribedi P, Mukhopadhyay B, Sil AK (2013) Antibacterial activity of long-chain fatty alcohols against Mycobacteria. FEMS Microbiol Lett 338:177–183

    Article  CAS  PubMed  Google Scholar 

  • Novick RP (2003) Auto induction and signal transduction in the regulation of Staphylococcal virulence. Mol Microbiol 48:1429–1449

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Geisinger E (2008) Auto induction and signal transduction in the regulation of Staphylococcal virulence. Annu Rev Genet 42:541–564

    Article  CAS  PubMed  Google Scholar 

  • Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paharik AE, Horswill AR (2016) The Staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0022-2015

    Article  PubMed  Google Scholar 

  • Paul P, Chakraborty P, Chatterjee A, Sarker RK, Dastidar DG, Kundu T, Sarkar N, Das A, Tribedi P (2021) 1, 4-Naphthoquinone 1 accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat. Arch Microbiol 203(3):1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Phillips JC, Hardy DJ, Maia JD, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, McGreevy R (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reifsteck F, Wee S, Wilkinson BJ (1987) Hydrophobicity-hydrophilicity of Staphylococci. J Med Microbiol 24:65–73

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg M, Perry A, Bayer EA, Gutnick DL, Rosenberg E, Ofek I (1981) Adherence of Acinetobacter calcoaceticus RAG-1 to human epithelial cells and to hexadecane. Infect Immun 33:29–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T (2015) Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J Mol Biol 427:3628–3645

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Pires MM (2015) d-Amino acids do not inhibit biofilm formation in Staphylococcus aureus. PLoS ONE 10(2):e0117613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarker RK, Chakraborty P, Paul P, Chatterjee A, Tribedi P (2020) Degradation of low-density poly ethylene (LDPE) by Enterobacter cloacae AKS7: a potential step towards sustainable environmental remediation. Arch Microbiol 202:2117–2125

    Article  CAS  PubMed  Google Scholar 

  • Su HL, Chou CC, Hung DJ, Lin SH, Pao IC, Lin JH, Huang FL, Dong RX, Lin JJ (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30:5979–5987

    Article  CAS  PubMed  Google Scholar 

  • Szank T, Kealey C, Brady D (2019) D-Amino acids do no inhibit biofilm formation in Staphylococcus sp. Access Microbiology 1(1A):873

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tribedi P, Sil AK (2014) Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2. J Appl Microbiol 116:295–303

    Article  CAS  PubMed  Google Scholar 

  • Tribedi P, Gupta AD, Sil AK (2015) Adaptation of Pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: an effective strategy for efficient survival and polymer degradation. Bioresour Bioprocess 2:1–10

    Article  Google Scholar 

  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6(3):269–275

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Sharmistha Das and Ms. Sudipta Chatterjee for a critical reading of the manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PP, PC, RKS, AC, DM, AD and SM performed the experiments and wrote the manuscript. DGD, SB and PT conceived the idea, designed the experiments and edited the manuscript critically.

Corresponding authors

Correspondence to Debabrata Ghosh Dastidar or Prosun Tribedi.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Supplementary file2 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, P., Chakraborty, P., Sarker, R.K. et al. Tryptophan interferes with the quorum sensing and cell surface hydrophobicity of Staphylococcus aureus: a promising approach to inhibit the biofilm development. 3 Biotech 11, 376 (2021). https://doi.org/10.1007/s13205-021-02924-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02924-3

Keywords

Navigation