Skip to main content

Advertisement

Log in

1,4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus, a Gram-positive opportunistic microorganism, promotes pathogenicity in the human host through biofilm formation. Microorganisms associated with biofilm often exhibit drug-resistance property that poses a major threat to public healthcare. Thus, the exploration of new therapeutic approaches is the need of the hour to manage biofilm-borne infections. In the present study, efforts are put together to test the antimicrobial as well as antibiofilm activity of 1,4-naphthoquinone against Staphylococcus aureus. The result showed that the minimum bactericidal concentration (MBC) of this compound was found to be 100 µg/mL against Staphylococcus aureus. In this regard, an array of experiments (crystal violet, biofilm protein measurement, and microscopic analysis) related to biofilm assay were conducted with the sub-MBC concentrations (1/20 and 1/10 MBC) of 1,4-naphthoquinone. All the results of biofilm assay demonstrated that these tested concentrations (1/20 and 1/10 MBC) of the compound (1,4-naphthoquinone) showed a significant reduction in biofilm development by Staphylococcus aureus. Moreover, the tested concentrations (1/20 and 1/10 MBC) of the compound (1,4-naphthoquinone) were able to reduce the microbial motility of Staphylococcus aureus that might affect the development of biofilm. Further studies revealed that the treatment of 1,4-naphthoquinone to the organism was found to increase the cellular accumulation of reactive oxygen species (ROS) that resulted in the inhibition of biofilm formation by Staphylococcus aureus. Hence, it can be concluded that 1,4-naphthoquinone might be considered as a promising compound towards biofilm inhibition caused by Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1:
Fig. 2:
Fig. 3
Fig. 4:
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babula P, Adam V, Havel L, Kizek R (2007) Naphthoquinones and their pharmacological properties. Ceska Slov Farm 56(3):114–120

    CAS  PubMed  Google Scholar 

  • Boles BR, Horswill AR (2011) Staphylococcal biofilm disassembly. Trends Microbiol 19(9):449–455

    Article  CAS  Google Scholar 

  • Chakraborty P, Joardar S, Ray S, Biswas P, Maiti D, Tribedi P (2018) 3, 6-Di (pyridin-2-yl)-1, 2, 4, 5-tetrazine (pytz)-capped silver nanoparticles (TzAgNPs) inhibit biofilm formation of Pseudomonas aeruginosa: a potential approach toward breaking the wall of biofilm through reactive oxygen species (ROS) generation. Folia Microbiol 63(6):763–772

    Article  CAS  Google Scholar 

  • Chakraborty P, Daware AV, Kumari M, Chatterjee A, Bhattacharyya D, Mitra G, Akhter Y, Bhattacharjee S, Tribedi P (2018) Free tryptophan residues inhibit quorum sensing of Pseudomonas aeruginosa: a potential approach to inhibit the development of microbial biofilm. Arch Microbiol 200(10):1419–1425

    Article  CAS  Google Scholar 

  • Chakraborty P, Dastidar D, Paul P, Dutta S, Basu D, Sharma S, Basu S, Sarker R, Sen A, Sarkar A, Tribedi P (2020) Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: a potential approach for sustainable management of biofilm. Arch Microbiol 202(3):623–635

    Article  CAS  Google Scholar 

  • Conrad A, Suutari MK, Keinänen MM, Cadoret A, Faure P, Mansuy-Huault L, Block JC (2003) Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs. Lipids 38(10):1093–1105

    Article  CAS  Google Scholar 

  • Cortes ME, Consuegra J, Sinisterra RD (2011) Biofilm formation, control, and novel strategies for eradication. Sci Against Microbial Pathog Commun Curr Res Technol Adv 2:896–905

    Google Scholar 

  • Costa O, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636

    Article  Google Scholar 

  • Das A, Gopalakrishnan B, Voss OH, Doseff AI, Villamena FA (2012) Inhibition of ROS-induced apoptosis in endothelial cells by nitrone spin traps via induction of phase II enzymes and suppression of mitochondria-dependent pro-apoptotic signaling. Biochem Pharmacol 84(4):486–497

    Article  CAS  Google Scholar 

  • Das MC, Paul S, Gupta P, Tribedi P, Sarkar S, Manna D, Bhattacharjee S (2016) 3-Amino-4-aminoximidofurazan derivatives: small molecules possessing antimicrobial and antibiofilm activity against Staphylococcus aureus and Pseudomonas aeruginosa. J Appl Microbiol 120(4):842–859

    Article  CAS  Google Scholar 

  • Das A, Narayanam MK, Paul S, Mukherjee P, Ghosh S, Dastidar DG, Chakrabarty S, Ganguli A, Basu B, Pal M, Chatterji U, Banerjee SK, Karmakar P, Kumar D, Chakrabarti G (2019) A novel triazole, NMK-T-057, induces autophagic cell death in breast cancer cells by inhibiting γ-secretase-mediated activation of Notch signaling. J Biol Chem 294(17):6733–6750

    Article  CAS  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–122

    Article  CAS  Google Scholar 

  • Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA (2014) Reactive oxygen species-mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS ONE 9(11):e111289

    Article  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633

    Article  CAS  Google Scholar 

  • Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056

    Article  CAS  Google Scholar 

  • Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention-a journey to break the wall: a review. Arch Microbiol 198(1):1–15

    Article  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57(1):395–418

    Article  CAS  Google Scholar 

  • Kaito C, Sekimizu K (2007) Colony spreading in Staphylococcus aureus. J Bacteriol Res 189(6):2553–2557

    Article  CAS  Google Scholar 

  • Kumar L, Chhibber S, Harjai K (2013) Zingerone inhibits biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia 90:73–78

    Article  CAS  Google Scholar 

  • Lee JH, Park JH, Cho MH, Lee J (2012) Flavone reduces the production of virulence factors, staphyloxanthin, and α-hemolysin Staphylococcus aureus. Curr Microbiol 65(6):726–732

    Article  CAS  Google Scholar 

  • Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Moscow) 70(2):267–274

    Article  CAS  Google Scholar 

  • Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4:178

    Article  Google Scholar 

  • Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V (2005) Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202(2):209–215

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  • Maric S, Vranes J (2007) Characteristics and significance of microbial biofilm formation. Period Biol 109:115–121

    Google Scholar 

  • Masuda K, Funayama S, Komiyama K, Unezawa I, Ito K (1987) Constituents of Tritoniacrocosmaeflora, I. Tricrozarin A, a novel antimicrobial naphthazarin derivative. J Nat Prod 50(3):418–421

    Article  CAS  Google Scholar 

  • Mukherjee K, Tribedi P, Mukhopadhyay B, Sil AK (2013) Antibacterial activity of long-chain fatty alcohols against mycobacteria. FEMS Microbiol Lett 338(2):177–183

    Article  CAS  Google Scholar 

  • Paharik AE, Horswill AR (2016) The Staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr. https://doi.org/10.1128/microbiolspec

    Article  PubMed  PubMed Central  Google Scholar 

  • Papageorgiou VP, Assimopoulou AN, Couladouros EA, Hepworth D, Nicolaou KC (1999) The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew Chem Int Ed 38(3):270–301

    Article  Google Scholar 

  • Pelz A, Wieland KP, Putzbach K, Hentschel P, Albert K, Götz F (2005) Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 280(37):32493–32498

    Article  CAS  Google Scholar 

  • Pollitt E, Crusz S, Diggle S (2016) Staphylococcus aureus forms spreading dendrites that have characteristics of active motility. Sci Rep 5(1):1–12

    Article  Google Scholar 

  • Ribeiro LM, Fumagalli F, Mello RB, Froes TQ, da Silva MV, Gomes SV, Barros TF, Emery FS, Castilho MS (2020) Structure-activity relationships and mechanism of action of tetragomycin derivatives as inhibitors of Staphylococcus aureusstaphyloxanthin biosynthesis. Microb Pathog 144:104127

    Article  CAS  Google Scholar 

  • Sharma BK, Saha A, Rahaman L, Bhattacharjee S, Tribedi P (2015) Silver inhibits the biofilm formation of Pseudomonas aeruginosa. Adv Microbiol 5(10):677

    Article  CAS  Google Scholar 

  • Spormann AM (1999) Gliding motility in bacteria: insights from studies of Myxococcusxanthus. Microbiol Mol Biol Rev 63(3):621–641

    Article  CAS  Google Scholar 

  • Sun F, Qu F, Ling Y, Mao P, Xia P, Chen H, Zhou D (2013) Biofilm-associated infections: antibiotic resistance and novel therapeutic strategies. Future Microbiol 8(7):877–886

    Article  CAS  Google Scholar 

  • Thomson RH (1971) Naturally occuring quinones. Acad Prf SS, New York

    Google Scholar 

  • Tribedi P, Gupta AD, Sil AK (2015) Adaptation of Pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: an effective strategy for efficient survival and polymer degradation. Bioresour Bioprocess 2(1):14

    Article  Google Scholar 

  • Yarwood JM, Schlievert PM (2003) Quorum sensing in Staphylococcus infections. J Clin Invest 112(11):1620–1625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amlan Das or Prosun Tribedi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 149 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, P., Chakraborty, P., Chatterjee, A. et al. 1,4-Naphthoquinone accumulates reactive oxygen species in Staphylococcus aureus: a promising approach towards effective management of biofilm threat. Arch Microbiol 203, 1183–1193 (2021). https://doi.org/10.1007/s00203-020-02117-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02117-1

Keywords

Navigation