Skip to main content

Advertisement

Log in

Neuroprotective effects on amyloid-beta induced cytotoxicity of Pandanus clementis Merr

  • Short Reports
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present study determined the neuroprotective potential of the alcoholic and aqueous extracts of Pandanus clementis Merr. (Pandanaceae) to protect the neuroblastoma SH-SY5Y cells against amyloid-beta1-42 (Aβ) cytotoxicity. Inhibition of Aβ aggregation was determined by Thioflavin T (ThT) assay, and in vitro neuroprotective cell viability, intracellular reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were evaluated with human neuroblastoma SH-SY5Y cells insulted with Aβ. Chromatographic separation on the alcoholic extract yielded known phytosterols. Results showed that pretreatment of the SH-SY5Y cells with the P. clementis extracts increased cell viability and MMP, and decreased ROS, suggesting protective effects. Hence, P. clementis extract has promising neuroprotective therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Adebiyi OA, Olopade JO, Olayemi FO (2018) Sodium metavanadate induced cognitive decline, behavioral impairements, oxidative stress and downregulation of myelin basic protein in mice hippocampus: ameliorative roles of β-spinasterol and stigmasterol. Brain Behav 8:e01014

    Article  Google Scholar 

  • Alvariňo R, Alonso E, Lacret R, Oves-Costales D, Genilloud O, Reyes F, Alfonso A, Botana LM (2019) Caniferolide A, a macrolide from Streptomyces caniferus, attenuates neuroinflammation, oxidative stress, amyloid-beta, and tau pathology in vitro. Mol Pharm 16:1456–1466

    Article  Google Scholar 

  • Alzheimer’s Disease International (2020). https://www.alzint.org/resource/numbers-of-people-with-dementia-worldwide/. Accessed 31 May 2021

  • Angeloni C, Vauzour D (2019) Natural products and neuroprotection. Int J Mol Sci 20:5570

    Article  Google Scholar 

  • Atanasov AG, Waltenberger B, Pferschy-Wensig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  CAS  Google Scholar 

  • Ayaz M, Junaid M, Ullah F, Subhan F, Sadiq A, Ali G, Ovais M, Shahid M, Ahmad A, Wadood A, El-Shazly M, Ahmad N, Ahmad S (2017) Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L. Front Pharmacol 8:697

    Article  Google Scholar 

  • Bagyinszky E, Giau VV, Shim K, Suk K, An SS, Kim SY (2017) Role of inflammatory molecules in the Alzheimer’s disease progression and diagnosis. J Neurol Sci 376:242–254

    Article  CAS  Google Scholar 

  • Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Article  CAS  Google Scholar 

  • Battisti A, Piccionello AP, Sgarbossa A, Vilasi S, Ricci C, Ghetti F, Spinozzi F, Gammazza AM, Giacalone V, Martorana A, Lauria A, Ferrero C, Bulone D, Mangione MR, San Biago PL, Ortore MG (2017) Curcumin-like compounds designed to modify amyloid beta peptide aggregation patterns. RSC Adv 7:31714–31724

    Article  CAS  Google Scholar 

  • Burg VK, Grimm HS, Rothhaar TL, Grösgen S, Hundsdörfer B, Haupenthal VJ, Zimmer VC, Mett J, Weingärtner O, Laufs U, Broersen LM, Tanila H, Vanmierlo T, Lütjohann D, Hartmann T, Grimm M (2013) Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J Neuroscie 33:16072–16087

    Article  CAS  Google Scholar 

  • Chowdhury SR, Xie F, Gu J, Fu L (2019) Small-molecule amyloid beta-aggregation inhibitors in Alzheimer’s disease drug development. Pharma Fronts 1:e22–e32

    Article  Google Scholar 

  • Dey A, Bhattacharya R, Mukherjee A, Pandey DK (2017) Natural products against Alzheimer’s disease: pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 35:178–216

    Article  CAS  Google Scholar 

  • Espargaró A, Ginex T, Vadell M, Busquets MA, Estelrich J, Muňoz-Torrero D, Luque FJ, Sabate R (2017) Combined in vitro cell-based/in silico screening of naturally occurring flavonoids and phenolic compounds as potential anti-Alzheimer drugs. J Nat Prod 80:278–289

    Article  Google Scholar 

  • Giorgetti S, Greco C, Tortora P, Aprile FA (2018) Targeting amyloid aggregation: an overview of strategies and mechanisms. Int J Mol Sci 19:2677

    Article  Google Scholar 

  • Jamerlan A, An SSA, Hulme J (2020) Advances in amyloid beta oligomer detection applications in Alzheimer’s disease. Trends Anal Chem 129:115919

    Article  CAS  Google Scholar 

  • Necula M, Kayed R, Milton S, Glabe CG (2007) Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282:10311–10324

    Article  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803

    Article  CAS  Google Scholar 

  • Panche AN, Chandra S, Diwan AD (2019) Multi-target β-protease inhibitors from Andrographis paniculata: In silico and in vitro studies. Plants 8:231

    Article  CAS  Google Scholar 

  • Peñalver P, Zodio S, Lucas R, de-Paz MV, Morales JC (2020) Neuroprotective and anti-inflammatory effects of pterostilbene metabolites in human neuroblastoma SH-SY5Y and RAW 264.7 macrophage cells. J Agric Food Chem 68:1609–1620

    Article  Google Scholar 

  • Phan HTT, Samarat K, Takamura Y, Azo-Oussou AF, Nakazono Y, Vestergaard MC (2019) Polyphenols modulate Alzheimer’s amyloid beta aggregation in a structure-dependent manner. Nutrients 11:756

    Article  CAS  Google Scholar 

  • Pohl F, Kong Thoo Lin P (2018) The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules 23:3283

    Article  Google Scholar 

  • Sharma S, Nehru B, Saini A (2017) Inhibition of Alzheimer’s amyloid-beta aggregation in vitro by carbenoxolone: insight into mechanism of action. Neurochem Int 108:481–493

    Article  CAS  Google Scholar 

  • Tan MA, Takayama H, Aimi N, Kitajima M, Franzblau SG, Nonato MG (2008) Antitubercular triterpenes and phytosterols from Pandanus tectorius Soland. var. laevis. J Nat Med 62:232–235

    Article  CAS  Google Scholar 

  • Tan MA, Lagamayo MWD, Alejandro GJD, An SSA (2019) Anti-amyloidogenic and cyclooxygenase inhibitory activity of Guettarda speciosa. Molecules 24:4112

    Article  CAS  Google Scholar 

  • Tan MA, Lagamayo MWD, Alejandro GJD, An SSA (2020) Neuroblastoma SH-SY5Y cytotoxicity, anti-amyloidogenic activity and cyclooxygenase inhibition of Lasianthus trichophlebus (Rubiaceae). 3 Biotech 10:152

    Article  Google Scholar 

  • Taylor JP, Brown RH, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206

    Article  Google Scholar 

  • Wang MJ, Yi S, Han J-Y, Park SJ, Jang J-W, Chun IK, Kim SE, Lee BS, Kim GJ, Yu JS, Lim K, Kang SM, Park YH, Youn YC, An SSA, Kim S (2017) Oligomeric forms of amyloid-β protein in plasma as a potential blood-based biomarker for Alzheimer’s disease. Alzheimer’s Res Ther 9:98

    Article  Google Scholar 

  • Wu C, Lei H, Wang Z, Zhang W, Duan Y (2006) Phenol red interacts with the protofibril-like oligomers of an amyloidogenic hexapeptide NFGAIL through both hydrophobic and aromatic contacts. Biophys J 91:3664–3672

    Article  CAS  Google Scholar 

  • Xia C-L, Tang G-H, Guo Y-Q, Xu Y-K, Huang Z-S, Yin S (2019) Mulberry Diels-Ader-type adducts from Morus alba as multi-targeted agents for Alzheimer’s disease. Phytochem 157:82–91

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Research Foundation of Korea (NRF) Grants awarded by the Korean government (MES, No. 2020R1A2B5B01002463) is gratefully acknowledged for their financial support. The De La Salle University (Laguna Campus, Philippines) is gratefully acknowledged for the NMR measurements and the Commission on Higher Education for additional resources. We also thank Dr. Porferio S. Bangcaya for the plant collection and Patricia Marie Oliva for the technical help on the plant extraction.

Author information

Authors and Affiliations

Authors

Contributions

MAT and SSAN conceptualized the study; MAT and BLUT performed the experiments; SSAN and MGN for the resources; MAT wrote the manuscript; MGN and SSAN revised the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Mario A. Tan or Seong Soo A. An.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Research involving human and animal participants

The article does not contain any studies involving human participants or animals.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 459 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M.A., Tan, B.L.U., Nonato, M.G. et al. Neuroprotective effects on amyloid-beta induced cytotoxicity of Pandanus clementis Merr. 3 Biotech 11, 330 (2021). https://doi.org/10.1007/s13205-021-02889-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02889-3

Keywords

Navigation