Skip to main content
Log in

Biodegradation of C20 carbon clusters from Diesel Fuel by Coriolopsis gallica: optimization, metabolic pathway, phytotoxicity

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

This study is to test the capacity of the white rot fungus Coriolopsis gallica for the biodegradation of Diesel Fuel hydrocarbons (DHs). Using the experimental face centered central composite design (FCCCD), culture conditions of the Diesel-mended medium were optimized to reach 110.43% of DHs removal rate, and l5267.35 U L−1 of laccase production by C. gallica, simultaneously. The optimal combination of the cultural parameters was: Diesel concentration range of 2.95–3.14%, inoculum size of 3%, incubation time of 15 days, Tween 80 concentration of 0.05%, and the ratio glucose/peptone (G/P) range of 10.15–10.27. Further, the degradation ability of C. gallica for Diesel Fuel was evaluated through mycelial pellets uptake and oxidative action of fungal enzymes in the optimized degrading-medium using gas chromatography–mass spectrometry (GC–MS). Cyclosiloxanes and C20 PAHs detected as the major compound in Diesel Fuel (46%) was completely bio-transformed to simple metabolites including, essentially benzoic acid ester (71%), alcohols (1.52%) epoxy alkane (1.07%), carboxylic acids (1.24%) and quinones (0.33%). Germination rate and root elongation, as a rapid phytotoxicity test demonstrated that toxicity of Diesel’s PAHs is minimized by fungal treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal N, Shahi KS (2017) Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsina strain APC5. Int Biodeterior Biodegrad 122:69–81

    CAS  Google Scholar 

  • Agrawal K, Chaturvedi V, Verma P (2018a) Fungal laccase discovered but yet undiscovered. Bioresour Bioprocess 5:4

    Google Scholar 

  • Agrawal N, Verma P, Kumar Shahi S (2018b) Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresour Bioprocess 5:11–20

    Google Scholar 

  • Al-Hawash AB, Zhang X, Ma F (2018) Removal and biodegradation of different petroleum hydrocarbons using the filamentous fungus Aspergillus sp. RFC-1. Microbiol Open. 8:619

    Google Scholar 

  • Ameen F, Hadi S, Moslem M, Al-Sabri A, Yassin MA (2015) Biodegradation of engine oil by fungi from mangrove habitat. J Gen Appl Microbiol 61:185–192

    CAS  PubMed  Google Scholar 

  • Andriani A, Tachibana S, Itoh K (2016) Effects of saline-alkaline stress on Benzo[a] pyrene biotransformation and ligninolytic enzyme expression by Bjerkandera adusta SM 46. World J Microbiol Biotechnol 32:39–45

    PubMed  Google Scholar 

  • Armon DJ, Allen MB, Whatley F (1956) Photosynthesis by isolated chloroplast. Biochim Biophys Acta 20:449–461

    Google Scholar 

  • Arun A, Praveen Raja P, Arthi R, Ananthi M, Sathish Kumar K, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151:132–142

    CAS  PubMed  Google Scholar 

  • Bhattacharya S, Das A, Prashanthi K, Palaniswamy M, Angayarkanni J (2014) Mycoremediation of Benzo[a]pyrene by Pleurotus ostreatus in the presence of heavy metals and mediators. 3Biotech 4:205–211

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    CAS  Google Scholar 

  • Borah D, Yadav RNS (2014) Biodegradation of complex hydrocarbon by a novel Bacillus cereus strains. J Environ Sci Technol 7:176–184

    CAS  Google Scholar 

  • Bücker F, Santestevan NA, Roesch LF, Jacques RJS, Peralba MCR, Camargo FAO, Bento FM (2011) Impact of biodiesel on biodeterioration of stored Brazilian Diesel oil. Int Biodeterior Biodegrad 65:172–178

    Google Scholar 

  • Camino G, Lomakin SM, Lageard M (2002) Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer 43:2011–2015

    CAS  Google Scholar 

  • Chainet F, LeMeur L, Lienemann C-P, Ponthus J, Courtiade M, Xavier Donard OF (2013) Characterization of silicon species issued from PDMS degradation under thermal cracking of hydrocarbons: Part 1 - Gas samples analysis by gas chromatography-time of flight mass spectrometry. Fuel 111:519–527

    CAS  Google Scholar 

  • Chaudhary DK, Kim D-U, Kim D, Kim J (2019) Flavobacterium petrolei sp. nov., a novel psychrophilic, Diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Sci Rep UK 9:4134

    Google Scholar 

  • Chen YJ, Wang HQ (2011) Study on mechanism of uptake, transport and biodegradation of n-hexadecane by Bacillus sp. DQ02. Chin J Environ Eng 3:5714–5720

    Google Scholar 

  • Chen Q, Bao M, Fan X, Liang S, Sun P (2011) Rhamnolipids enhance marine oil spill bioremediation in laboratory system. Mar Pollut Bull 71:269–275

    CAS  Google Scholar 

  • Clarkson MA, Abubakar SI (2015) Bioremediation and biodegradation of hydrocarbon contaminated soils. IOSR J Environ Sci 9:38–45

    Google Scholar 

  • Czaplicki L, Dharia M, Cooper EM, Ferguson PL, Gunsch C (2018) Evaluating the mycostimulation potential of select carbon amendments for the degradation of a model PAH by an ascomycete strain enriched from a superfund site. Biodegradation 29:463–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza-Ticlo D, Garg S, Raghukumar C (2009) Effects and interactions of medium components on laccase from a marine-derived fungus using response surface methodology. Mar Drugs 7:672–688

    PubMed  PubMed Central  Google Scholar 

  • Daâssi D, Mechichi T, Nasri M, Rodriguez-Couto S (2013) Decolorization of the metal textile dye Lanaset Grey G by immobilized white-rot fungi. J Environ Manag 129:324–332

    Google Scholar 

  • Daâssi D, Prieto A, Zouari-Mechichi H, Martínez MJ, Nasri M, Mechichi T (2016a) Degradation of bisphenol A by different fungal laccases and identification of its degradation products. Int Biodeterior Biodegrad 110:181–188

    Google Scholar 

  • Daâssi D, Sellami S, Frikha F, Rodriguez-Couto S, Nasri M, Mechichi T (2016b) Assessment of Coriolopsis gallica-treated olive mill wastewater phytotoxicity on tomato plants. Environ Sci Pollut Res 23:15370–21580

    Google Scholar 

  • Daâssi D, Zouari-Mechichi H, Belbahri L, Barriuso J, Martınez MJ, Nasri M, Mechichi T (2016c) Phylogenetic and metabolic diversity of Tunisian forest wood-degrading fungi: a wealth of novelties and opportunities for biotechnology. 3 Biotech 6:46

    PubMed  PubMed Central  Google Scholar 

  • Daccò C, Girometta C, Asemoloye MD, Carpani G, Picco AM, Tosi S (2020) Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: a review. Int Biodeterior Biodegrad 147:104866

    Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. https://doi.org/10.4061/2011/941810

    Article  PubMed  Google Scholar 

  • Dubreuil A-C, Chainet F, de Sousa Bartolomeu RM, Marques Mota FM, Janvier J, Lienemann C-P (2017) Understanding the impact of silicon compounds on metallic catalysts through experiments and multi-technical analysis. C.R. Chimie 20:55–66

    CAS  Google Scholar 

  • Eggert C, Temp U, Eriksson K-EL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eibes G, CajthamL T, Moreira M, Feijoo G, Lema J (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64:408–414

    CAS  PubMed  Google Scholar 

  • ESO (2000) (1999) The complete database of essential oils. Boelens Aroma Chemical Information Service, Huizen

    Google Scholar 

  • Fadle N, Mariod AA, Ali HAR, Hasan AA (2020) TLC and GC-MS analysis of fermented wood “Nikhra” petroleum ether fraction of Combretaceae spp. Combretum hartmannianum and Terminalia laxiflora. Eurasian J For Sci 6:1–7

    Google Scholar 

  • Frena M, Oliveira CR, da Silva CA, Madureira LAS, Azevedo DA (2014) Photochemical degradation of diesel oil in water: a comparative study of different photochemical oxidation processes and their degradation by-products. J Braz Chem Soc 25:1372–1379

    CAS  Google Scholar 

  • Gao L, Sun MH, Liu XZ, Che YS (2007) Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycol Res 111:87–92

    CAS  PubMed  Google Scholar 

  • Ghanem KM, Al-Garni SM, Al-Zahrani MA (2016) Bioremediation of Diesel Fuel by fungal consortium using statistical experimental designs. Pol J Environ Stud 25:97–106

    CAS  Google Scholar 

  • Guarino C, Sciarrillo R (2017) Effectiveness of in situ application of an Integrated Phytoremediation System (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils. Ecol Eng 99:70–82

    Google Scholar 

  • Hildebrandt WW, Wilson SB (1991) Bioremediation systems reduce crude oil contamination. J Petrol Technol 43:18–22

    CAS  Google Scholar 

  • Hu B, Jiang Z, Wang W, Qiu Y, Zhang Z, Liu Y et al (2019) Nitrate-NRT1.1B–SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat Plants 5:401–413

    CAS  PubMed  Google Scholar 

  • Imron MF, Titah HS (2018) Optimization of Diesel biodegradation by Vibrio alginolyticus using Box-Behnken design. Environ Eng Res 23:374–382

    Google Scholar 

  • Joulain D, Koenig WA (1998) The atlas of spectra data of sesquiterpene hydrocarbons. EB-Verlag, Hamburg

    Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    CAS  Google Scholar 

  • Kachlishvili E, Penninckx MJ, Tsiklauri N, Elisashvili V (2005) Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J Microbiol Biotechnol 22:391–397

    Google Scholar 

  • Kadri T, Rouissi T, Kaur Brar S, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    CAS  Google Scholar 

  • Kim MK, Yun KJ, Lim DH, Kim J, Jang YP (2016) Anti-inflammatory properties of flavone di-C-glycosides as active principles of Camellia Mistletoe, Korthalsella japonica. Biomol Ther (Seoul) 24:630–637

    CAS  Google Scholar 

  • Li Y, Liu H, Tian Z, Zhu L, Wu Y, Tang H (2008) Diesel pollution biodegradation: synergetic effect of Mycobacterium and filamentous fungi. Biomed Environ Sci 21:181–187

    CAS  PubMed  Google Scholar 

  • Majeau J-A, Brar SK, Tyagi RD (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350

    CAS  PubMed  Google Scholar 

  • Manganyi MC, Tchatchouang C-DK, Regnier T, Bezuidenhout CC, Ateba CN (2019) Bioactive compound produced by endophytic fungi isolated from Pelargonium sidoides against selected bacteria of clinical Importance. Mycobiology 47:335–339

    PubMed  PubMed Central  Google Scholar 

  • Medeiros DB, da Luz LM, de Oliveira HO, Araujo WL, Daloso DM, Alisdair R (2019) Fernie metabolomics for understanding stomatal movements. Theor Exp Plant Physiol 31:91–102

    CAS  Google Scholar 

  • Michaud L, Lo Giudice A, Saitta M, De Domenico M, Bruni V (2004) The biodegradation efficiency on Diesel oil by two psychrotrophic Antarctic marine bacteria during a two-monthlong experiment. Mar Pollut Bull 49:405–409

    CAS  PubMed  Google Scholar 

  • Miosoa R, Marante FJT, Bravo de-Laguna IH (2015) Constituents of the fermentation broth of the marine-derived fungus Penicillium roqueforti. Rev Iberoam Micol 32:147–152

    Google Scholar 

  • Mittal A, Singh P (2009) Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Indian J Exp Biol 47:760–765

    PubMed  Google Scholar 

  • Moghimi H, Tabar RH, Hamedi J (2017) Assessing the biodegradation of polycyclic aromatic hydrocarbons and laccase production by new fungus Trematophoma sp. UTMC 5003. World J Microbiol Biotechnol 33:136–146

    PubMed  Google Scholar 

  • Nasraoui HA, Gouia H (2014) Photosynthesis sensitivity to NH4-N change with nitrogen fertilizer type. Plant Soil Environ 60:274–279

    Google Scholar 

  • Nazifa TH, Bin Ahmad MA, Hadibarata T, Salmiati Aris A (2018) Bioremediation of Diesel oil spill by filamentous fungus Trichoderma reesei H002 in aquatic environment. Int J Integr Eng 10:103–107

    Google Scholar 

  • Olowomofe TO, Oluyege JO, Aderiye BI, Oluwole OA (2019) Degradation of poly aromatic fractions of crude oil and detection of catabolic genes in hydrocarbon-degrading bacteria isolated from Agbabu bitumen sediments in Ondo State. AIMS Microbiol 5:308–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrem Loss EM, Yu J-H (2018) Bioremediation and microbial metabolism of benzo(a)pyrene. Mol Microbiol 109:433–444

    CAS  PubMed  Google Scholar 

  • Oudot J (1984) Rates of microbial degradation of petroleum compounds as determined by computerized capillary gas chromatography and computerized mass spectrometry. Mar Environ Rese 13:277–302

    CAS  Google Scholar 

  • Palanisamy N, Ramya J, Kumar S, Vasanthi NS, Chandran P, Khan S (2014) Diesel biodegradation capacities of indigenous bacterial species isolated from Diesel contaminated soil. J Environ Health Sci Eng 12:142–150

    PubMed  PubMed Central  Google Scholar 

  • Park H, Min B, Jang Y, Kim J, Lipzen A, Sharma A, Andreopoulos B, Johnson J, Riley R, Spatafora JW, Henrissat B, Kim KH, Grigoriev IV, Kim J-J, Choi I-G (2019) Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613. Appl Microbiol Biotechnol 103:8145–8155

    CAS  PubMed  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    CAS  PubMed  Google Scholar 

  • Polidoro BA, Comeros-Raynal MT, Cahill T, Clement C (2017) Land-based sources of marine pollution: pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa. Mar Pollut Bull 116:501–507

    CAS  PubMed  Google Scholar 

  • Ravanipour M, Kalantary RR, Mohseni-Bandpi A, Esrafili A, Farzadkia M, Hashemi-Najafabadi S (2015) Experimental design approach to the optimization of PAHs bioremediation from artificially contaminated soil: application of variables screening development. J Environ Health Sci Eng 13:22

    PubMed  PubMed Central  Google Scholar 

  • Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed 5:182–189

    CAS  Google Scholar 

  • Reyes-Cesar A, Absalon AE, Fernandez FJ, Gonzalez JM, Cortes-Espinosa DV (2014) Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil. World J Microbiol Biotechnol 30:999–1009

    CAS  PubMed  Google Scholar 

  • Salleh AB, Ghazali FM, Abd Rahman RNZ, Basri M (2003) Bioremediation of petroleum hydrocarbon pollution. Indian J Biotechnol 2:411–425

    CAS  Google Scholar 

  • Samanta A, Das G, Das SK (2011) Roles of flavonoids in plants. Int J Pharm Sci Tech 6:12–35

    Google Scholar 

  • Saraswathy A, Hallberg R (2005) Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene. Microbiol Res 160:375–383

    CAS  PubMed  Google Scholar 

  • Silva DSP, Cavalcanti DL, de Melo EJV, dos Santos PNF, da Luz ELP, de Gusmão NB, de Vieira de Queiroz Sousa M (2015) Bio-removal of Diesel oil through a microbial consortium isolated from a polluted environment. Int Biodeterior Biodegrad 97:85–89

    Google Scholar 

  • Simona AG, Mills DK, Furton KG (2017) Chemotyping the temporal volatile organic compounds of an invasive fungus to the United States, Raffaelea lauricola. J Chrom A 1487:72–76

    Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken

    Google Scholar 

  • Stopsack H, Auweiler J, Zepter R, Schmidt M (1991) Isolation and purification of 3-isobutylhexahydropyrrolo[1,2-a]pyrazyn-1,4-dione from fermentation media. Ger East. Patent. DD287272

  • Tripathi V, Edrisi SA, Chen B, Gupta VK, Vilu R, Gathergood N, Abhilash PC (2017) Biotechnological advances for restoring degraded land for sustainable development. Trends Biotechnol 35:847–859

    CAS  PubMed  Google Scholar 

  • Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286

    CAS  PubMed  Google Scholar 

  • Wang C, Sun H, Li J, Li Y, Zhang Q (2009) Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77:733–738

    CAS  PubMed  Google Scholar 

  • Wang X, Wang M, Han Y, Chen H (2020) Identifying unregulated emissions from conventional Diesel self-ignition and PPCI marine engines at full load conditions. J Mar Sci Eng 8:101–118

    Google Scholar 

  • Watson JS, Jones DM, Swannell RPJ, van Duin ACT (2002) Formation of carboxylic acids during aerobic biodegradation of crude oil and evidence of microbial oxidation of hopanes. Org Geochem 33:1153–1169

    CAS  Google Scholar 

  • Wu Y-R, Luo Z-H, Vrijmoed LLP (2010) Biodegradation of anthracene and benz[a]anthracene by two Fusarium solani strains isolated from Mangrove sediments. Bioresour Technol 101:9666–9672

    CAS  PubMed  Google Scholar 

  • Xie W, Lou YJ (2012) Determination of volatile compounds of Perusquid by headspace solid phase microextraction gas chromatography-mass spectrometry. Sci Technol Food Ind. 30:71–75

    Google Scholar 

  • Young CC, Lin TC, Yeh MS, Shen FT, Chang JS (2005) Identification and kinetic characteristics of an indigenous Diesel-degrading Gordonia alkanivorans strain. World J Microbiol Biotechnol 21:1409

    Google Scholar 

  • Zemo DA, O’Reilly KT, Mohler RE, Magaw RI, Devine CE, Ahn S, Tiwary AK (2016) Life cycle of petroleum biodegradation metabolite plumes, and implications for risk management at fuel release sites Dawn. Integr Environ Assess Manag 13:714–727

    PubMed  Google Scholar 

  • Zhou JF, Gao PK, Dai XH, Cui XY, Tian HM, Xie J, Li GQ, Ma T (2018) Heavy hydrocarbon degradation of crude oil by a novel thermophilic Geobacillus stearothermophilus strain A-2. Int Biodeterior Biodegrad 126:224–230

    CAS  Google Scholar 

  • Zucconi F, Monaco A, Forte M (1985) Phytotoxins during the stabilization of organic matter. In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier Applied Science Publication, New York, pp 73–86

    Google Scholar 

Download references

Acknowledgements

All the authors acknowledge and thank the Chemical Department of the Faculty of Sciences and Arts of Khulais, for allowing the use of spectrophotometer and Dr. Nada M. Doleib (Faculty of Sciences and Arts, Khulais, Jeddah) for helping to obtain the Diesel fuel from Saudi Aramco. Also we thank Mr. Mahmoud Daassi [English Teacher, Sultanate of Oman, Dhofar Region] to check English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalel Daâssi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daâssi, D., Nasraoui-Hajaji, A., Bawasir, S. et al. Biodegradation of C20 carbon clusters from Diesel Fuel by Coriolopsis gallica: optimization, metabolic pathway, phytotoxicity. 3 Biotech 11, 214 (2021). https://doi.org/10.1007/s13205-021-02769-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02769-w

Keywords

Navigation