Skip to main content

Advertisement

Log in

Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases

  • Review Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

As the environmental and health concerns alert the necessity to move towards a sustainable agriculture system, biological approach using indigenous plant growth-promoting rhizobacteria (PGPR) gains a strong impetus in the field of plant disease control. In this context, the present review article addresses the usage of rhizospheric antagonistic bacteria as a suitable alternative to control tomato fungal diseases namely Fusarium wilt and early blight disease. Biological control has been considered to be an eco-friendly, safe and effective method for disease management. The inherent traits of PGPR to antagonize a pathogen through various mechanisms has been investigated extensively to utilize them as potent biocontrol agents (BCA). Hence, the article provides a detailed account on different biocontrol mechanisms displayed by BCA. It is also suggested that the use of bacterial consortium ensures consistent performance by BCA in field conditions. Likewise, this review also deals with the opportunities and obstacles faced during commercialization of these antagonistic bacteria as biocontrol agents in the market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdallah RA, Mokni-Tlili S, Nefzi A, Jabnoun-Khiareddine H, Daami-Remadi M (2016) Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol Control 97:80–88

    Google Scholar 

  • Abo-Elyousr KAM, Khalil BHMM, Hashem M, Alamri SAM, Mostafa YS (2019) Biological control of the tomato wilt caused by Clavibacter michiganensis subsp. michiganensis using formulated plant growth-promoting bacteria. Egypt J Biol Pest Control 29(54):1–8

    Google Scholar 

  • Adhikari P, Yeonyee O, Dilip RP (2017) Molecular sciences current status of early blight resistance in tomato: an update. Int J Mol Sci 18:1–22. https://doi.org/10.3390/ijms18102019

    Article  CAS  Google Scholar 

  • Aeron A, Sandeep K, Piyush P, Maheshwari DK (2011) Emerging role of plant growth promoting rhizobacteria in agrobiology. In: Bacteria in agrobiology: crop ecosystems. Springer, Berlin, pp 1–36. 10.1007/978-3-642-18357-7_1

  • Agrawal K, Sharma DK, Jain VK (2012) Seed-borne bacterial diseases of tomato (Lycopersicon esculentum Mill.) and their control measures: a review. Int J Food 2(2):173–182

    Google Scholar 

  • Ahmed HE, Zienat KM, Mohamed EE, Mohamed GF, Zienat K (2011) Induced systemic protection against tomato leaf spot (early leaf blight) and bacterial speck by rhizobacterial isolates. J Exp Biol 7(1):49–57. https://www.egyseb.org

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Google Scholar 

  • Ajilogba CF, Babalola OO (2013) Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci 18(3):117–27. https://www.ncbi.nlm.nih.gov/pubmed/24077535

  • Akhtar A, Merajul IR, Rushda S (2012) Plant growth promoting rhizobacteria: an overview. J Nat Prod Plant Resour 2(1):19–31. https://scholarsresearchlibrary.com/archive.html

  • Akhtar T, Qaiser S, Ghulam S, Sher M, Yasir I, Ullah MI, Mustansar M, Abdul H (2017) Evaluation of fungicides and biopesticides for the control of Fusarium wilt of tomato. Pak J Bot 49(2):769–74. https://www.pakbs.org/pjbot/PDFs/49(2)/48.pdf

  • Akintokun AK, Taiwo MO (2016) Biocontrol Potentials of individual specie of rhizobacteria and their consortium against phytopathogenic Fusarium oxysporum and Rhizoctonia solani. Int J Sci Res Environ Sci 4(7):219–227. https://doi.org/10.12983/ijsres-2016-p0219-0227

    Article  CAS  Google Scholar 

  • Aloo BN, Makumba BA, Mbega ER (2018) The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39. https://doi.org/10.1016/j.micres.2018.10.011

    Article  PubMed  Google Scholar 

  • Amini J, Sidovich DF (2010) The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. J Plant Prot Res 50(2):172–178. https://doi.org/10.2478/V10045-010-0029-X

    Article  CAS  Google Scholar 

  • Arenas OR, Olguín JFL, Ramón DJ, Sangerman-Jarquín DM, Lezama CP, Morales PS, Lara MH (2018) Biological control of Fusarium oxysporum in tomato seedling production with Mexican strains of Trichoderma. In: Fusarium—plant diseases, pathogen diversity, genetic diversity, resistance and molecular markers, pp 155–168

  • Arora NK, Ekta K, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Plant growth promoting rhizobacteria. Springer, Berlin, p 18. 10.1007/978-3-642-13612-2_5

  • Arya N et al (2018) Biocontrol efficacy of siderophore producing indigenous Pseudomonas strains against Fusarium wilt in Tomato. Natl Acad Sci Lett 41(3):133–136

    CAS  Google Scholar 

  • Ashraf MS, Khan TA (2010) Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch Phytopathol Plant Prot 43:609–614

    Google Scholar 

  • Attia MS et al (2020) The effective antagonistic potential of plant growth-promoting rhizobacteria against Alternaria solani-causing early blight disease in tomato plant. Sci Hortic 266:109289

    CAS  Google Scholar 

  • Azeez L, Segun AA, Abdulrasaq OO, Rasheed OA, Kazeem OT (2019) Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. J Saudi Soc 18:120–126. https://doi.org/10.1016/j.jssas.2017.03.002

    Article  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570. https://doi.org/10.1007/s10529-010-0347-0

    Article  CAS  PubMed  Google Scholar 

  • Barea JM et al (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778. https://academic.oup.com/jxb/articleabstract/56/417/1761/484466

  • Bawa I (2016) Management strategies of fusarium wilt disease of tomato incited by Fusarium oxysporum f. sp. lycopersici (Sacc.): a review. Int J Adv Acad Res Sci Technol Eng 2(5):2488–9849. https://www.ijaar.org/articles/volume2-number5/Sciences-Technology-Engineering/ijaar-ste-v2n5-may16-p5.pdf

  • Bellishree GGK, Ramachandra YL, Chethana BS, Archana SR (2015) Mitigation of early blight of tomato by the intervention of fungal and bacterial bioagents. Int J Curr Trends Sci Technol 3(5):14–19. https://www.journalijcst.com/sites/default/files/issue-files/008_0.pdf

  • Beneduzi A, Adriana A, Luciane MPP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–51. https://www.scielo.br/pdf/gmb/v35n4s1/20.pdf

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350. https://doi.org/10.1007/s11274-011-0979-9

    Article  CAS  PubMed  Google Scholar 

  • Boukerma L, Messaoud BB, Ahmed C, Lakhdar K (2017) Activity of plant growth promoting rhizobacteria (PGPRs) in the biocontrol of tomato Fusarium wilt. Plant Protect Sci 53(2):78–84. https://doi.org/10.17221/178/2015-PPS

    Article  CAS  Google Scholar 

  • Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 15–47

    Google Scholar 

  • Carmona-Hernandez S, Juan R-P, Roberto C-C, Gabriel R-E, Carlos C-C, Luis H-M, Saul C-H et al (2019) Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: a review. Agronomy 9(3):1–15. https://doi.org/10.3390/agronomy9030121

    Article  CAS  Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB et al (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685. https://doi.org/10.1099/00221287-148-9-2675

    Article  CAS  PubMed  Google Scholar 

  • Catanzariti A-M, Ginny TTL, David AJ (2015) The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease. New Phytol 207:106–118. https://doi.org/10.1111/nph.13348

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yan F, Chai Y, Liu H, Kolter R, Losick R, Guo J (2013) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ Microbiol 15(3):848–864

    PubMed  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513. https://doi.org/10.1016/j.micres.2008.08.007

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P, Mohan Kumar SP, Jyothi ML, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65(1):109–117. https://doi.org/10.1016/J.BIOCONTROL.2012.11.009

    Article  Google Scholar 

  • Colombo C et al (2014) Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J Soil Sediment 14(3):538–548

    CAS  Google Scholar 

  • Compant S et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cwalina-Ambroziak B, Ryszard A (2012) Effects of biological and fungicidal environmental protection on chemical composition of tomato and red pepper fruits. Pol J Environ Stud 21(4):831–36. https://www.pjoes.com/pdf/21.4/Pol.J.Environ.Stud.Vol.21.No.4.831-836.pdf

  • Da C, Silva S, Ana C, Fermino S, Marlon D, Silva G (2008) Characterization of Streptomycetes with potential to promote plant growth and biocontrol. Sci Agric 65(1): 50–55. https://www.scielo.br/pdf/sa/v65n1/07.pdf

  • Damam M, Kalpana K, Bagyanarayana G, Rana K (2016) Plant growth promoting substances (phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int J Pharm Sci Rev Res 37(24):130–36. https://globalresearchonline.net/journalcontents/v37-1/24.pdf

  • Danish S, Yaseen N, Awet T, Bereket T, Gezae A, Ruta M (2014) Survey of economical important fungal diseases of tomato in sub-zoba hamemalo of eritrea. Rev Plant Stud 1(2):39–48. https://doi.org/10.18488/journal.69/2014.1.2/69.2.39.48

    Article  Google Scholar 

  • Desta M, Yesuf M (2015) Efficacy and economics of fungicides and their application schedule for early blight (Alternaria solani) management and yield of tomato at South Tigray Ethiopia. J Plant Pathol Microbiol 6(5):1–6. https://doi.org/10.4172/2157-7471.1000268

    Article  Google Scholar 

  • Dorjey S, Disket D, Richa S (2017) Plant growth promoting rhizobacteria Pseudomonas: a review. Int J Curr Microbiol Appl Sci 6(7):1335–1344. https://doi.org/10.20546/ijcmas.2017.607.160

    Article  CAS  Google Scholar 

  • El-Gamal NG, Abeer NS, Eman RH, Heba SS (2016) Improvement of lytic enzymes producing Pseudomonas fluorescens and Bacillus subtilis isolates for enhancing their biocontrol potential against root rot disease in tomato plants. RJPBCS 7(1):1393–1400. https://www.rjpbcs.com/pdf/2016_7(1)/[197].pdf

  • Elsayed TR, Jacquiod S, Nour EH, Sørensen SJ, Smalla K (2020) Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Front Microbiol 10:1–15

    Google Scholar 

  • Elshafie HS, Sakr S, Bufo SA, Camele I (2017) An attempt of biocontrol the tomato-wilt disease caused by Verticillium dahliae using Burkholderia gladioli pv. agaricicola and its bioactive secondary metabolites. Int J Plant Biol 8(7263):57–60

    Google Scholar 

  • Farag HRM, Zeinab AA, Dawlat AS, Mervat ARI, Sror HAM (2011) Effect of neem and willow aqueous extracts on Fusarium wilt disease in tomato seedlings: induction of antioxidant defensive enzymes. Ann Agric Sci 56(1):1–7. https://doi.org/10.1016/J.AOAS.2011.05.007

    Article  Google Scholar 

  • Ferreira CMH et al (2019) Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Express 9(78):1–12

    Google Scholar 

  • Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31(2):93–123. https://doi.org/10.1080/07352689.2011.616057

    Article  Google Scholar 

  • Frank A, Saldierna-Guzmán J, Shay J (2017) Transmission of bacterial endophytes. Microorganisms 5:E70. https://doi.org/10.3390/microorganisms5040070

    Article  CAS  PubMed  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64(1):839–863. https://doi.org/10.1146/annurev-arplant-042811-105606

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt stress conditions. J Appl Microbiol 108(1):236–245

    CAS  PubMed  Google Scholar 

  • GhaRasheed MH (2016) Evaluation of different fungicides against Alternaria solani (Ellis & Martin) sorauer cause of early. Int J Zool Stud 1(5):8–12

    Google Scholar 

  • Ghavami N et al (2017) Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. J Plant Nutr 40(5):736–746

    CAS  Google Scholar 

  • Ghazanfar MURW, Ahmed KS, Qamar J, Haider N, Rasheed MH (2016) Evaluation of different fungicides against Alternaria solani (Ellis & Martin) sorauer cause of early blight of tomato. Int J Zool Stud 1:8–12

    Google Scholar 

  • Gledson MFH, Renata SR, Patrícia RS, Camila CLA, Elisângela AM, José RO, de Ávila RF (2014) Rhizobacteria induces resistance against Fusarium wilt of tomato by increasing the activity of defense enzymes rhizobacteria induces resistance against Fusarium. Plant Prot 73(3):274–283. https://doi.org/10.1590/1678-4499.0124

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 15:963401. https://doi.org/10.6064/2012/963401

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  • Goswami D, Janki NT, Pinakin CD, Manuel TM (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1–19. https://doi.org/10.1080/23311932.2015.1127500

    Article  CAS  Google Scholar 

  • Goudjal Y, Toumatiaa O, Yekkoura A, Sabaoua N, Mathieuc F, Zitounia A (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65

    CAS  PubMed  Google Scholar 

  • Goudjal Y et al (2016) Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedlings. Biocontrol Sci Technol 26(12):1691–1705

    Google Scholar 

  • Goussous SJ, Firas MAS, Ragheb AT (2010) Antifungal activity of several medicinal plants extracts against the early blight pathogen Alternaria solani. Arch Phytopathol Pflanzenschutz 43(17):1745–1757. https://doi.org/10.1080/03235401003633832

    Article  Google Scholar 

  • Gowtham HG, Hariprasad P, Nayak SC, Niranjana SR (2016) Application of rhizobacteria antagonistic to Fusarium oxysporum f. sp. lycopersici for the management of Fusarium wilt in tomato. Rhizosphere 2:72–74

    Google Scholar 

  • Gowtham HG, Hariprasad P, Niranjana SR (2017) Employing formulations of beneficial rhizobacteria to improve growth and health of tomato (Lycopersicon esculentum Mill.). Int J Pharm Biol Sci 8(2):607–612

    CAS  Google Scholar 

  • Hadimani BR, Kulkarni S (2016) Bioefficacy of B diseases of tomato Bacillus subtilis against foliar fungal diseases of tomato. Int J Appl Pure Sci Agric 2(2):220–27. https://ijapsa.com/published-papers/volume-2/issue-2/bioefficacy-of-bacillus-subtilis-against-foliar-fungal-diseases-of-tomato.pdf

  • Haldar S, Sanghamitra S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9:1–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406998/pdf/TOMICROJ-9-1.pdf

  • Hanson P, Shu-Fen L, Jaw-Fen W, Wallace C, Lawrence K, Chee-Wee T, Kwee LT et al (2016) Conventional and molecular marker-assisted selection and pyramiding of genes for multiple disease resistance in tomato. Sci Hortic 201:346–354. https://doi.org/10.1016/J.SCIENTA.2016.02.020

    Article  CAS  Google Scholar 

  • Hariprasad P, Chandrashekar S, Brijesh SS, Niranjana SR (2013) Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa. J Basic Microbiol 54(8):792–801. https://doi.org/10.1002/jobm.201200491

    Article  CAS  PubMed  Google Scholar 

  • Hassanein NM, Abou Z, Mohamed A, Khayria AY, Mahmoud DA (2010) Control of tomato early blight and wilt using aqueous extract of neem leaves. Phytopathol Mediterr 49:143–51. https://fupress.net/index.php/pm/article/viewFile/3085/8144

  • Hayat R et al (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • He M, Mohammad SJ, Yu W, Jin S, Sheng S, Shirong G (2020) Compost amendments based on vinegar residue promote tomato growth and suppress bacterial wilt caused by Ralstonia Solanacearum. Pathogens 9(3):1–20. https://doi.org/10.3390/pathogens9030227

    Article  Google Scholar 

  • Heidari M, Amir G (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in Basil (Ocimum basilicum L.) the highest GPX and APX activity and chlorophyll content in leaves under water stress were in S4 combination of three bacterial species. J Saudi Soc Agric Sci 11:57–61. https://doi.org/10.1016/j.jssas.2011.09.001

    Article  Google Scholar 

  • Heidarzadeh N, Baghaee-Ravari S (2015) Application of Bacillus pumilus as a potential biocontrol agent of Fusarium wilt of tomato. Arch Phytopathol Pflanzenschutz 48:841–849. https://doi.org/10.1080/03235408.2016.1140611

    Article  CAS  Google Scholar 

  • Heydari A, Mohammad P (2010) A review on biological control of fungal plant pathogens using microbial antogonists. J Biol Sci 10(4):273–90. https://scialert.net/qredirect.php?doi=jbs.2010.273.290&linkid=pdf

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    CAS  PubMed  Google Scholar 

  • Huang J, Wei Z, Tan S, Mei X, Yin S, Shen Q, Xu Y (2013) The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt. Appl Soil Ecol 72:79–84

    Google Scholar 

  • Hussain I, Syed SA, Imran K, Bismillah S, Ahmad N, Nangial K, Babar I et al (2016) Study on the biological control of Fusarium wilt of tomato. J Entomol Zool Stud 525 (42):525–28. https://www.entomoljournal.com/archives/2016/vol4issue2/PartH/4-3-59.pdf

  • Islam A, Kabir MS, Khair A (2019) Molecular identification and evaluation of indigenous bacterial isolates for their plant growth promoting and biological control activities against Fusarium wilt pathogen of tomato. Plant Pathol J 35(2):137–148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jadhav HP, Shaikh SS, Sayyed RZ (2017) Role of hydrolytic enzymes of rhizoflora in biocontrol of fungal phytopathogens: an overview. In: Rhizotrophs: plant growth promotion to bioremediation. Springer, Singapore, pp 183–203. 10.1007/978-981-10-4862-3_9

  • Jadhav HP, Sayyed RZ (2016) Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Sci Rep 3(5):00070. https://doi.org/10.15406/mojcsr.2016.03.00070

    Article  Google Scholar 

  • Jagadeesh KS, Jagadeesh DR (2009) Biological control of early blight of tomato caused by Alternaria solani as influenced by different delivery methods of Pseudomonas gladioli B25. Acta Hortic 808:327–332. https://doi.org/10.17660/ActaHortic.2009.808.52

    Article  CAS  Google Scholar 

  • Jain A, Das S (2016) Insight into the interaction between plants and associated fluorescent Pseudomonas spp. Int J Agron. https://doi.org/10.1155/2016/4269010

    Article  Google Scholar 

  • Jorjani M, Asghar H, Hamid RZ, Saeed R, Laleh N (2011) Development of Pseudomonas fluorescens and Bacillus coagulans based bioformulations using organic and inorganic carriers and evaluation of their influence on growth parameters of sugar beet. J Biopestic 4(2):180–85. https://www.jbiopest.com/users/lw8/efiles/vol_4_2_260c.pdf

  • Junaid JM, Nisar AD, Tariq AB, Arif HB, Mudasir AB (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1(12):39–57

    Google Scholar 

  • Kalita M, Moonmee B, Tapan D, Kabita G, Pallavi D, Bala GU, Dibyajyoti O, Indira S (2015) Developing novel bacterial based bioformulation having PGPR properties for enhanced production of agricultural crops. Indian J Exp Biol 53:56–60. https://www.neist.res.in/publication/IJEB_53_(1)_56-60_(EB-140113-2).pdf

  • Kannan V, Sureendar R (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49(2):158–164. https://doi.org/10.1002/jobm.200800011

    Article  CAS  PubMed  Google Scholar 

  • Kannapiran E, Sri R (2011) Isolation of phosphate solubilizing bacteria from the sediments of Thondi Coast, Palk Strait, Southeast Coast of India. Ann Biol Res 2(5):157–163

    CAS  Google Scholar 

  • Kapoor R, Ajay K, Amit K, Sandip P, Shobit T, Mohinder K (2012) Evaluation of plant growth promoting attributes and lytic enzyme production by fluorescent Pseudomonas diversity associated with apple and pear. Int J Sci Res 2(1): 2250–3153. www.ijsrp.org.

  • Karpagam T, Nagalakshmi PK (2014) Isolation and characterization of phosphate solubilizing microbes from agricultural soil. Int J Curr Microbiol Appl Sci 3(3):601–14. https://www.ijcmas.com/vol-3-3/T.KarpagamandP.K.Nagalakshmi.pdf

  • Kaur R, Neelam J, Virk JS, Sudhendu S (2016) Evaluation of Pseudomonas fluorescens for the management of tomato early blight disease and fruit borer. J Environ Biol 37:869–72. https://www.jeb.co.in/journal_issues/201609_sep16/paper_02.pdf

  • Khan N, Aradhana M, Nautiyal CS (2012) Paenibacillus Lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biol Control 62(2):65–74. https://doi.org/10.1016/J.BIOCONTROL.2012.03.010

    Article  Google Scholar 

  • Khiareddine HJ, Riad SRM (2015) Variation in chitosan and salicylic acid efficacy towards soil-borne and air-borne fungi and their suppressive effect of Tomato wilt severity. J Plant Pathol Microbiol 6(11):1–10. https://doi.org/10.4172/2157-7471.1000325

    Article  CAS  Google Scholar 

  • Khilyas IV, Shirshikova TV, Matrosova LE, Sorokina AV, Sharipova MR, Bogomolnaya LM (2016) Production of siderophores by Serratia marcescens and the role of MacAB efflux pump in siderophores secretion. Bionanoscience 6(4):480–482

    Google Scholar 

  • Kilani-Feki O, Khedher SB, Dammak M, Kamoun A, JabnounKhiareddine H, Daami-Remadi M, Tounsi S (2016) Improvement of antifungal metabolites production by Bacillus subtilis V26 for biocontrol of tomato postharvest disease. Biol Control 95:73–82

    CAS  Google Scholar 

  • Kuiper I et al (2001) Increased uptake of putrescine in the rhizosphere inhibits competitive root colonization by Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 14(9):1096–1104

    CAS  PubMed  Google Scholar 

  • Kumar V, Gurvinder S, Ankur T (2017) Evaluation of different fungicides against Alternaria leaf blight of tomato (Alternaria solani). Int J Curr Microbiol Appl Sci 6(5):2343–2350. https://doi.org/10.20546/ijcmas.2017.605.262

    Article  CAS  Google Scholar 

  • Kumar D, Praveen R, Thenmozhi D, Anupama P, Nagasathya A, Thajuddin N, Paneerselvam A (2011) Selection of potential antogonistic Bacillus and Trichoderma isolates from tomato rhizospheric soil against Fusarium oxysporum. F. sp. Lycoperscisi. Res J Biol Sci 6(10):523–31. https://docsdrive.com/pdfs/medwelljournals/rjbsci/2011/523-531.pdf

  • Kundan R, Garima P, Nitesh J, Pavan KA (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 06(02):1–9. https://doi.org/10.4172/2471-2728.1000155

    Article  Google Scholar 

  • Lachisa L, Dabassa A (2016) Synergetic effect of rhizosphere bacteria isolates and composted manure on fusarium wilt disease of tomato plants. Res J Microbiol 11(1):20–27

    CAS  Google Scholar 

  • Laurence MH, Summerell BA, Burgess LW, Liew ECY (2014) Genealogical concordance phylogenetic species recognition in the Fusarium oxysporum species complex. Fungal Biol 118:374–384

    PubMed  Google Scholar 

  • Lee JM, Chang-Sik O, Inhwa Y (2015) Molecular markers for selecting diverse disease resistances in tomato breeding programs. Plant Breed Biotechnol 3(4):308–322. https://doi.org/10.9787/PBB.2015.3.4.308

    Article  Google Scholar 

  • Lian Q, Zhang J, Gan L, Ma Q, Zong Z, Wang Y (2017) The biocontrol efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in tomato. Biomed Res Int 9486794:1–11

    Google Scholar 

  • Linu MS, Jisha MS (2017) In vitro control of Colletotrichum capsici induced chilli anthracnose by fungicides and biocontrol agent. Int J Appl Pure Sci Agric 3(5):27–33. https://doi.org/10.22623/IJAPSA.2017.3037.G49GW

    Article  Google Scholar 

  • Liu D et al (2017) Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Braz J Microbiol 48(4):656–670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization By Pseudomonas. Annu Rev Phytopathol 39(1):461–490

    CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2010) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Mabood F, Xiaomin Z, Donald LS (2014) Microbial signaling and plant growth promotion. Can J Plant Sci 94:1051–1063. https://doi.org/10.4141/CJPS2013-148

    Article  CAS  Google Scholar 

  • Mahantesh SP, Patil SC, Himanshu V (2015) Isolation and characterization of potent phosphate solublizing bacteria. J Microbiol Biotechnol Food Sci 1(1):23–28. https://iosi.in/images/iosijmbfsissue/v1-i1/6.pdf

  • Maheshwari DK (2011) Plant growth and health promoting bacteria. microbiology monographs, vol 18. Springer, Berlin. 10.1007/978-3-642-13612-2

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting microorganisms as alternative to chemical protection from pathogens (review). Prikl Biokhim Mikrobiol 47(4):373–85. https://www.ncbi.nlm.nih.gov/pubmed/21950110

  • Mamgain A, Rajib RC, Jagatpati T (2014) Alternaria pathogenicity and its strategic controls. Res J Biol 1:1–19. https://www.researchgate.net/publication/266652331

  • Mandal S, Ramesh CR (2011) Induced systemic resistance in biocontrol of plant diseases. Springer, Berlin. 10.1007/978-3-642-19769-7_11

  • Mangalanayaki R, Durga R, Sengamala T (2016) Antagonistic effect of Bacillus species in biocontrol of plant pathogen Fusarium. World J Pharm Pharm Sci 5(6):956–966. https://doi.org/10.20959/wjpps20166-6833

    Article  CAS  Google Scholar 

  • Manikprabhu D, Li WJ (2016) Antimicrobial agents from actinomycetes: chemistry and applications. In: Dhanasekaran D, Thajuddin N, Panneerselvam A (eds) Antimicrobials synthetic and natural compounds. Taylor & Francis Group, Milton Park, pp 99–115

    Google Scholar 

  • Manivannan M, Tholkappian P (2013) Prevelence of Azospirillum isolates in tomato rhizosphere soils of coastal areas of Cuddalore District, Tamil Nadu. Int J Recent Sci Res 4(10):1610–13. https://www.recentscientific.com/sites/default/files/Download_649.pdf

  • Manoj SI, Yelena K, Bala G, Unni M, Chandra K, Jayshree DA, Naglot S, Borsingh W, Lokendra S (2010) Control of Fusarium wilt of tomato caused by Fusarium oxysporum F. sp. lycopersici using leaf extract of Piper Betle L.: a preliminary study. World J Microbiol Biotechnol 27:2583–2589. https://doi.org/10.1007/s11274-011-0730-6

    Article  Google Scholar 

  • Marian M, Morita A, Koyama H, Suga H, Shimizu M (2019) Enhanced biocontrol of tomato bacterial wilt using the combined application of Mitsuaria sp. TWR114 and nonpathogenic Ralstonia sp. TCR112. J Gen Plant Pathol 85:142–154

    Google Scholar 

  • Maurya U, Lal EP, Yadav OP, Prakash A, Alok KS (2015) Plant growth promoting rhizobacteria and their activity against early blight of tomato. Indian J Life Sci 5(1):57–62. https://www.ijls.in/upload/9867645Chapter_10.pdf

  • McGovern RJ (2015) Management of tomato diseases caused by Fusarium oxysporum. Crop Prot. https://doi.org/10.1016/j.cropro.2015.02.021

    Article  Google Scholar 

  • Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121. https://doi.org/10.1016/j.envexpbot.2013.11.005

    Article  CAS  Google Scholar 

  • Mishra J, Naveen KA (2016) Bioformulations for plant growth promotion and combating phytopathogens : a sustainable approach. 10.1007/978-81-322-2779-3_1

  • Mishra J, Arora NK (2018) Secondary metabolites of fluorescent Pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol 125:35–45

    Google Scholar 

  • Mj B, Bisen KK, Singh H (2017) Biological management of Fusarium wilt of tomato using biofortified vermicompost. Mycosphere 8(3):467–483. https://doi.org/10.5943/mycosphere/8/3/8

    Article  Google Scholar 

  • Moges MM, Val ST, Tesso MJ (2012) Influence of some antagonistic bacteria against early blight (Alternaria solani (Ell. & Mart.) Jones & Grout.) of tomato (Lycopersicon Esculentum Mill.). Afr J Plant Sci Biotechnol 6(1):40–44

  • Mohamad OAA, Li L, Ma J-B, Hatab S, Xu L, Guo J-W, Rasulov BA, Liu Y-H, Hedlund BP, Li W-J (2018) Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus Against Verticillium dahliae. Front Microbiol 9(924):1–14

    Google Scholar 

  • Maung CH, Choia TG, Namb HH, Kima KY (2017) Role of Bacillus amyloliquefaciens Y1 in the control of Fusarium wilt disease and growth promotion of tomato. Biocontrol Sci Technol 27(12):1400–1415

    Google Scholar 

  • Nadeem SM, Maqshoof A, Zahir AZ, Arshad J, Muhammad A (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448. https://doi.org/10.1016/j.biotechadv.2013.12.005

    Article  PubMed  Google Scholar 

  • Nour V, Tatiana DP, Mariana R, Raluca T, Alexandru RC (2018) Nutritional and bioactive compounds in dried tomato processing waste. Cyta J Food 16(1):222–229. https://doi.org/10.1080/19476337.2017.1383514

    Article  CAS  Google Scholar 

  • Ongena M, Emmanuel J, Akram A, Michel P, Alain B, Bernard J, Jean-Louis A, Philippe T (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9(4):1084–1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x

    Article  CAS  PubMed  Google Scholar 

  • Pane C, Zaccardelli M (2015) Evaluation of Bacillus strains isolated from solanaceous phylloplane for biocontrol of Alternaria early blight of tomato. Biol Control 84:11–18

    CAS  Google Scholar 

  • Paramanandham P et al (2017) Biocontrol potential against Fusarium oxysporum f.sp. lycopersici and Alternaria solani and Tomato plant growth due to plant growth–promoting rhizobacteria. Int J Veg Sci 23(4):1–10

    Google Scholar 

  • Patel SJ, Subramanian RB, Yachana SJ (2011) Biochemical and molecular studies of early blight disease in tomato. Phytoparasitica 39(3):269–283. https://doi.org/10.1007/s12600-011-0156-6

    Article  CAS  Google Scholar 

  • Pathak R, Anupama S, Janardan L, Dhurva PG (2017) PGPR in biocontrol: mechanisms and roles in disease suppression. Int J Agron Agric 11(1):69–80. https://www.innspub.net/wp-content/uploads/2017/08/IJAAR-Vol-11-No-1-p-69-80.pdf

  • Paul K, Kehinde J (2012) Evaluation of plant growth-promoting rhizobacteria for the control of bacterial wilt disease of tomato. Glob J Biosci Biotechnol (GJBB) 1(2):253–56. https://scienceandnature.org/GJBB_Vol1(2)2012/GJBB-V1(2)2012-25.pdf

  • Pawar PR, Ashok MB, Yogesh PL (2016) Early blight of tomato. Int J Adv Technol Innov Res 8(9):1721–1728

    Google Scholar 

  • Phichai K (2014) Biological control of tomato leaf blight disease by high cell density culture of antagonistic Bacillus subtilis. Khon Kaen Agric J 42(4):106–12. https://ag2.kku.ac.th/kaj/PDF.cfm?filename=207.pdf&id=2164&keeptrack=3

  • Pieterse CMJ, Christos Z, Roeland LB, David MW, Saskia CMW, Peter AHMB (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52(1):347–375. https://doi.org/10.1146/annurev-phyto-082712-102340

    Article  CAS  PubMed  Google Scholar 

  • Prasanna R, Vidhi C, Vishal G, Santosh B, Arun K, Rajendra S, Yashbir SS, Lata N (2013) Cyanobacteria mediated plant growth promotion and bioprotection against Fusarium wilt in tomato. Eur J Plant Pathol 136(2):337–353. https://doi.org/10.1007/s10658-013-0167-x

    Article  Google Scholar 

  • Prashar P, Kapoor N, Sachdeva S (2013) Isolation and characterization of Bacillus sp. with in-vitro antagonistic activity against Fusarium oxysporum from rhizosphere of tomato. J Agric Sci Technol 15:1501–12. https://jast.modares.ac.ir/article_10229_962ee819ff65b2efc3b37bbc5e31c3f1.pdf

  • Praveen KD, Anupama PD, Rajesh KS, Thenmozhi R, Nagasathya A, Thajuddin N, Paneerselvam A (2012) Evaluation of extracellular lytic enzymes from indigenous Bacillus isolates. Int Res J Microbiol 3(2):2141–5463. https://www.interesjournals.org/IRJM

  • Punja ZK, Rodriguez G, Tirajoh A (2016) Effects of Bacillus subtilis strain QST 713 and storage temperatures on post-harvest disease development on greenhouse tomatoes. Crop Prot 84:98–104

    CAS  Google Scholar 

  • Qurashi AW, Anjum NS (2012) Bacterial exopolysaccharide and biofil formulate chick pea growth and soil aggregation under salt stress. Braz J Microbiol 43(3):1183–91. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3768896/pdf/bjm-43-1183.pdf

  • Raguchander T, Saravanakumar D, Balasubramanian P (2011) Molecular approaches to improvement of biocontrol agents of plant diseases. J Biol Control 25(2):71–84

    Google Scholar 

  • Radzki W, Gutierrez FJ, Mañ E, Algar E, García JAL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Anton Leeuw Int J G 104(3):321–330. https://doi.org/10.1007/s10482-013-9954-9

    Article  CAS  Google Scholar 

  • Ramadan EM, Ahmed AA, Enas AH, Fekria MS (2016) Plant growth promoting rhizobacteria and their potential for biocontrol of phytopathogens. Afr J Microbiol Res 10(15):486–504. https://doi.org/10.5897/AJMR2015.7714

    Article  CAS  Google Scholar 

  • Ramette A et al (2003) Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent Pseudomonads and its relationship with host Plant species and HCN synthesis ability. Mol Plant Microbe Interact 16(6):525–535

    CAS  PubMed  Google Scholar 

  • Ramette A, Moenne-Loccoz Y, Défago G (2006) Genetic diversity and biocontrol potential of fluorescent Pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55(3):369–381

    CAS  PubMed  Google Scholar 

  • Ravensberg WJ (2015) Commercialisation of microbes: present situation and future prospects. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer International Publishing, Cham, pp 309–17. 10.1007/978-3-319-08575-3_32

  • Ravikumar MC, Garampalli RH (2013) Antifungal activity of plants extracts against Alternaria solani, the causal agent of early blight of tomato. Arch Phytopathol Pflanzenschutz 46(16):1897–1903. https://doi.org/10.1080/03235408.2013.780350

    Article  Google Scholar 

  • Raza W, Usman GM, Yasir I, Shahzad A, Kanwer HN, Hamid RM (2016) Management of early blight of tomato through the use of plant extracts. Int J Zool Stud 1(5):01–04

    Google Scholar 

  • Rijavec T, Lapanje A (2017) Cyanogenic Pseudomonas spp. strains are concentrated in the rhizosphere of alpine pioneer plants. Microbiol Res 194:20–28

    CAS  PubMed  Google Scholar 

  • Saad OAO, Moharram TM, El-sheikh AMM, Muqlad RR (2016) Biological control of fungal wilt of tomato by plant growth promoting rhizobacteria and Trichoderma harzianum. J Phytopathol Pest Manag 3(3):1–10

    Google Scholar 

  • Sabate DC et al (2017) Decrease in the incidence of charcoal root rot in common bean (Phaseolus vulgaris L.) by Bacillus amyloliquefaciens B14, a strain with PGPR properties. Biol Control 113:1–8

    CAS  Google Scholar 

  • Sadana D, Nidhi D (2016) Evaluation of fungicides, plant extracts and Trichoderma harzianum against early blight disease of tomato plants under in vitro and greenhouse conditions. Afr J Sci Res 2(5):72–75. https://ajsr.rstpublishers.com/

  • Sagervanshi A, Kumari P, Nagee A, Kumar A (2012) Isolation and characterization of phosphate solublizing bacteria from anand agriculture soil. Int J Life Sci Pharm Res 2(3):256–266

    CAS  Google Scholar 

  • Sahu DK, Khare CP, Singh HK, Thakur MP (2013) Evaluation of newer fungicide for management of early blight of tomato in chhattisgarh. Save Nat Survive 8 (4): 1255–59. https://www.thebioscan.in/Journals_PDF/8427_D.K.SAHU.pdf

  • Salim HA, Sobita S, Abhilasha AL, Sagheer A, Yasir M, Sohail A (2017) Integrated diseases management (IDM) against tomato (Lycopersicon esculentum L.) Fusarium wilt. J Environ Agric Sci 11:29–34. https://www.agropublishers.com/files/JEAS-11-29-34__Tomato__Fusarium_wilt.PDF

  • Sandheep, Athul R, Aju KA, Jisha MS (2012) Biocontrol of rhizoctonia rot of Vanilla (Vanilla planifolia) using combined inoculation of Trichoderma sp. and Pseudomonas sp. Int J Pharm Bio Sci 3(3):706–16. https://www.ijpbs.net/vol-3/issue-3/bio/82.pdf

  • Sanjoth G, Sudheer M (2016) Isolation, screening and characterization of phosphate solubilizing bacteria from Karwar Costal Region. Int J Res Stud Microbiol Biotechnol 2(2):1–6. https://doi.org/10.20431/2454-9428.0202001

    Article  Google Scholar 

  • Sanoubar R, Lorenzo B (2017) Fungal diseases on tomato plant under greenhouse condition. Eur J Biol Res 7(4):299–308

    Google Scholar 

  • Santoyo G, del Orozco-Mosqueda MC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22(8):855–872. https://doi.org/10.1080/09583157.2012.694413

    Article  Google Scholar 

  • Schenk PM, Carvalhais LC, Kazan K (2012) Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 30(3):177–184

    CAS  PubMed  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:358. www.annualreviews.org

  • Segarra G et al (2010) Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol 59:141–149

    PubMed  Google Scholar 

  • Sehrawat A, Sindhu SS (2019) Potential of biocontrol agents in plant disease control for improving food safety. Def Life Sci J 4(4):220–225

    Google Scholar 

  • Shanmugam V, Kanoujia N (2011) Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture. Biol Control 57(2):85–93. https://doi.org/10.1016/J.BIOCONTROL.2011.02.001

    Article  Google Scholar 

  • Shirley M et al (2011) Comparison of iron acquisition from Fe–pyoverdine by strategy I and strategy II plants. J Bot 89(10):731–735

    CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2002) Resistance against the damping-off fungus Rhizoctonia solani systemically induced by the plant-growth-promoting rhizobacteria Pseudomonas aeruginosa (IE-6S+) and P. fluorescens (CHA0). J Phytopathol 150:500–506

    Google Scholar 

  • Singh S, Govind G, Ekta K, Behal KK, Naveen KA (2014) Effect of enrichment material on the shelf life and field efficiency of bioformulation of Rhizobium sp. and P-solubilizing Pseudomonas fluorescens. Sci Res Rep 4(1):44–50

    Google Scholar 

  • Singh V, Govind G, Shailendra SP, Narendra KA, Sunil KS (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(7):96–102. https://doi.org/10.4172/1948-5948.1000188

    Article  CAS  Google Scholar 

  • Singh VK, Singh AK, Kumar A (2017) Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech 7(255):1–10

    Google Scholar 

  • Solanki MK, Rajesh KS, Supriya S, Sudheer K, Prem LK, Alok KS, Dilip KA (2014) Isolation and characterization of siderophore producing antagonistic Rhizobacteria against Rhizoctonia Solani. J Basic Microbiol 54(6):585–597. https://doi.org/10.1002/jobm.201200564

    Article  CAS  PubMed  Google Scholar 

  • Someya N et al (2006) Combined use of the biocontrol bacterium Pseudomonas fluorescens strain LRB3W1 with reduced fungicide application for the control of tomato Fusarium wilt. Biocontrol Sci 11(2):75–80

    PubMed  Google Scholar 

  • Son J-S, Marilyn S, Ye-Ji H, Byung-Soo K, Sa-Youl G (2014) Screening of plant growth-promoting rhizobacteria as elicitor of systemic resistance against gray leaf spot disease in Pepper. Appl Soil Ecol 73:1–8. https://doi.org/10.1016/j.apsoil.2013.07.016

    Article  Google Scholar 

  • Srinivas C, Nirmala Devi D, Narasimha Murthy K et al (2019) Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt diseaseof tomato: biology to diversity—a review. Saudi J Biol Sci 26:1315–1324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen J, Jisha MS (2011) Gluconic acid production as the principal mechanism of mineral phosphate solubilization by Burkholderia sp. (MTCC 8369). J Trop Agric 49(1–2):99–103

    CAS  Google Scholar 

  • Suleiman A, Vidya HCS, Elizabeth TJ (2017) Biocontrol of early blight of tomato using consortium of Bacillus subtilis and Pseudomonas fluorescens. Int J Life Sci Res 4(1):133–38. https://www.imrfjournals.in/pdf/MATHS/LSIRJ-NEW-JOURNALS/LSIRJ-41/34.pdf

  • Sundaramoorthy S, Balabaskar P (2013) Biocontrol efficacy of Trichoderma spp. against wilt of tomato caused by Fusarium oxysporum f sp. lycopersici. J Appl Biol 1(03):36–40. https://doi.org/10.7324/JABB.2013.1306

    Article  Google Scholar 

  • Syed AR, Sharifah F, Eugenie S, Corné MJP, Peer MS (2018) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111. https://doi.org/10.1016/j.plantsci.2017.11.012

    Article  CAS  Google Scholar 

  • Tabassum B, Khan A, Tariq M, Ramzan M, Khan MSI, Shahid N, Aaliya K (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117

    Google Scholar 

  • Tank N, Meenu S (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5(1):51–58. https://doi.org/10.1080/17429140903125848

    Article  CAS  Google Scholar 

  • Tariq M, Noman M, Temoor A, Amir H, Natasha M, Marriam Z (2017) Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): a review. J Plant Sci Phytopathol 1:038–043. https://www.heighpubs.org/jpsp/pdf/jpsp-aid1004.pdf

  • Tewari S, Naveen KA (2014) Multifunctional Exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69(4):484–494. https://doi.org/10.1007/s00284-014-0612-x

    Article  CAS  PubMed  Google Scholar 

  • Thakkar A, Saraf M (2015) Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine Max L. Arch Phytopathol Pflanzenschutz 48(6):459–474. https://doi.org/10.1080/03235408.2014.893638

    Article  Google Scholar 

  • Thenmozhi, P, Dinakar S (2014) Exopolysaccharides (EPS) mediated induction of systemic resistance (ISR) in Bacillus–Fusarium oxysporum f. sp. Lycopersici pathosystem in tomato (var. PKM-1). Int J Curr Microbiol Appl Sci 3(9): 839–46. https://www.ijcmas.com/vol-3-9/P.ThenmozhiandS.Dinakar.pdf

  • Thilagavathi R, Saravanakumar D, Ragupathi N, Samiyappan R (2007) A combination of biocontrol agents improves the management of dry root rot (Macrophomina Phaseolina) in greengram. Phytopathol Mediterr 46(2):157–167. https://doi.org/10.14601/phytopathol_mediterr-2147

    Article  CAS  Google Scholar 

  • Toua D, Messaoud B, Fatiha B, Rabah B (2013) Evaluation of Pseudomonas fluorescens for the biocontrol of Fusarium wilt in tomato and flax. Afr J Microbiol Res 7(48):5449–5458. https://doi.org/10.5897/AJMR12.2019

    Article  Google Scholar 

  • Trapet P, Avoscan L, Klinguer A, Pateyron S, Citerne S, Chervin C, Mazurier S, Lemanceau P, Wendehenne D, Besson-Bard A (2016) The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favour of growth in iron-deficient conditions. Plant Physiol 171:675–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa-Ogaz AL, Muñoz-Castellanos LN, Nevárez-Moorillón GV (2015) Biocontrol of phytopathogens: antibiotic production as mechanism of control. https://www.microbiology5.org/microbiology5/book/305-309.pdf

  • van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biocontrol 57(1):1–20. https://doi.org/10.1007/s10526-011-9395-1

    Article  Google Scholar 

  • Venant N, Marc O, Maïté S, Philippe T (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 2(15):327–37. https://www.pressesagro.be/base/text/v15n2/327.pdf

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. https://apsjournals.apsnet.org/doi/pdfplus/10.1094/PHYTO-97-2-0250. Accessed 27 July

  • Yazici S, Yusuf Y, Isa K (2011) Evaluation of bacteria for biological control of early blight disease of tomato. Afr J Biotechnol 10(9):1573–1577. https://doi.org/10.5897/AJB10.1718

    Article  Google Scholar 

  • Yeole GJ, Kotkar HM, Teli NP, Mendki PS (2016) Herbal fungicide to control Fusarium wilt in tomato plants. Biopestic Int 12(1):25–35

    Google Scholar 

  • Yoon MY, Byeongjin C, Jin CK (2013) Recent trends in studies on botanical fungicides in agriculture. Plant Pathol J 29(1):1–9. https://doi.org/10.5423/PPJ.RW.05.2012.0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J, Zhang J, Wu M, Yang L, Chen W, Li G (2016) Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biol Control 101:31–38

    Google Scholar 

  • Zhou L, Yuen G, Wang Y, Wei L, Ji G (2016) Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Prot 84:8–13

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank School of Biosciences, Mahatma Gandhi University for providing necessary facilities. The first author is greatly thankful to the University Grants Commission, Government of India for the financial support in the form of Senior Research Fellowship, Vide Sr. No.2061530793.

Funding

The first author is very much thankful to the University Grants Commission, Government of India for the financial support in the form of SRF, Vide Sr. No.2061530793.

Author information

Authors and Affiliations

Authors

Contributions

SK and SV conceptualized and designed the manuscript; MSJ reviewed and approved the manuscript.

Corresponding author

Correspondence to M. S. Jisha.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthika, S., Varghese, S. & Jisha, M.S. Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech 10, 320 (2020). https://doi.org/10.1007/s13205-020-02306-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02306-1

Keywords

Navigation