Skip to main content

Advertisement

Log in

Lactococcus lactis KA-FF 1-4 reduces vancomycin-resistant enterococci and impacts the human gut microbiome

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Probiotic is an alternative method to treat intestinal infection disease caused by antibiotic-resistant bacteria. In this study, Lactococcus lactis KA-FF 1-4 demonstrated to have the potential to inhibit the growth of Vancomycin-resistant enterococci (VRE) by producing anti-microbial substance. In co-culture, L. lactis KA-FF 1-4 (108 CFU/mL) inhibited the growth of VRE from 103–104 CFU/mL to zero after 6 h of exposure. However, in a gut model contained human gut microbiota, this anti-VRE activity of L. lactis KA-FF 1-4 was reduced to only 3.59–6.12%. The unexpected difference in efficacy between the experimental models could be explained by the fact that the growth of L. lactis KA-FF 1-4 was stable in the gut model. Leaving aside these limitations, we observed that adding L. lactis KA-FF 1-4 into the human gut model containing VRE was able to enhance microbial richness and diversity. Specifically, a higher abundance of beneficial microbes from the group of Bifidobacterium spp. and Bacteroides fragilis. L. lactis KA-FF 1-4 also enhanced the abundance of Parabacteroides, Lactococcus, and Fusobacterium and promoted the production of lactic acid in the gut model. However, these effects were not observed in the gut model without L. lactis KA-FF 1-4. Even though this study could not demonstrate a significant anti-VRE effect of the L. lactis KA-FF 1-4 in a gut model, our results still offer evidence that L. lactis KA-FF 1-4 could positively modulate the gut microbiota by promoting the growth of beneficial microbes and their metabolite. L. lactis KA-FF 1-4 has probiotic properties to fight against VRE infection, therefore further investigation in animal model is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamberg S, Tomson K, Vija H, Puurand M, Kabanova N, Visnapuu T, Jõgi E, Alamäe T, Adamberg K (2014) Degradation of fructans and production of propionic acid by bacteroides thetaiotaomicron are enhanced by the shortage of amino acids. Front Nutr 1:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexander C, Swanson KS, Fahey GC Jr, Garleb KA (2019) Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Adv Nutr 10(4):576–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Almohaya AM, Almutairy TS, Alqahtani A, Binkhamis K, Almajid FM (2020) Fusobacterium bloodstream infections: a literature review and hospital-based case series. Anaerobe 62:102165

    Article  CAS  PubMed  Google Scholar 

  • Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M (2016) The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis 15(1):108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT, McMurdo MET (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70(6):3575–3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belizario JE, Faintuch J, Garay-Malpartida M (2018) Gut microbiome dysbiosis and immunometabolism: new frontiers for treatment of metabolic diseases. Mediat Inflamm 2018:2037838

    Article  CAS  Google Scholar 

  • Blandino G, Inturri R, Lazzara F, Di Rosa M, Malaguarnera L (2016) Impact of gut microbiota on diabetes mellitus. Diabetes Metab 42(5):303–315

    Article  CAS  PubMed  Google Scholar 

  • Doron S, Hibberd PL, Goldin B, Thorpe C, McDermott L, Snydman DR (2015) Effect of Lactobacillus rhamnosus GG administration on vancomycin-resistant enterococcus colonization in adults with comorbidities. Antimicrob Agents Chemother 59(8):4593–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dou L, Meng D, Dong Y, Chen L, Han X, Fan D, Dong H (2020) Dosage regimen and toxicity risk assessment of linezolid in sepsis patients. Int J Infect Dis 96:105–111

    Article  CAS  PubMed  Google Scholar 

  • Gill PA, van Zelm MC, Muir JG, Gibson PR (2018) Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther 48(1):15–34

    Article  CAS  PubMed  Google Scholar 

  • Houlihan HH, Stokes DP, Rybak MJ (2000) Pharmacodynamics of vancomycin and ampicillin alone and in combination with gentamicin once daily or thrice daily against Enterococcus faecalis in an in vitro infection model. J Antimicrob Chemother 46(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La-Ongkham O, Nakphaichit M, Leelavatcharamas V, Keawsompong S, Nitisinprasert S (2015) Distinct gut microbiota of healthy children from two different geographic regions of Thailand. Arch Microbiol 197(4):561–573

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ma L, Fu P (2017) Gut microbiota-derived short-chain fatty acids and kidney diseases. Drug Des Dev Ther 11:3531–3542

    Article  CAS  Google Scholar 

  • Lund M, Bjerrum L, Pedersen K (2010) Quantification of Faecalibacterium prausnitzii- and Subdoligranulum variabile-like bacteria in the cecum of chickens by real-time PCR. Poult Sci 89(6):1217–1224

    Article  CAS  PubMed  Google Scholar 

  • Marcos M, Iñurrieta A, Soriano A, Martínez JA, Almela M, Marco F, Mensa J (2008) Effect of antimicrobial therapy on mortality in 377 episodes of Enterobacter spp. bacteraemia. J Antimicrob Chemother 62(2):397–403

    Article  CAS  PubMed  Google Scholar 

  • Martinis E, Alves V, Franco B (2002) Fundamentals and perspectives for the use of bacteriocins produced by lactic acid bacteria in meat products. Food Rev Int 18:191–208

    Article  CAS  Google Scholar 

  • Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, Oyaizu H, Tanaka R (2002) Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68(11):5445–5451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuki T, Watanabe K, Fujimoto J, Takada T, Tanaka R (2004) Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol 70(12):7220–7228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6(3):610–618

    Article  CAS  PubMed  Google Scholar 

  • Millette M, Cornut G, Dupont C, Shareck F, Archambault D, Lacroix M (2008) Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl Environ Microbiol 74(7):1997–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moise PA, Sakoulas G, McKinnell JA, Lamp KC, DePestel DD, Yoon MJ, Reyes K, Zervos MJ (2015) Clinical outcomes of daptomycin for vancomycin-resistant enterococcus bacteremia. Clin Ther 37(7):1443–1453

    Article  CAS  PubMed  Google Scholar 

  • Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama J (2010) Pyrosequence-based 16S rRNA profiling of gastrointestinal microbiota. Biosci Microflo 29(2):83–96

    Article  CAS  Google Scholar 

  • Onumpai C, Kolida S, Bonnin E, Rastall RA (2011) Microbial utilization and selectivity of pectin fractions with various structures. Appl Environ Microbiol 77(16):5747–5754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phumisantiphong U, Siripanichgon K, Reamtong O, Diraphat P (2017) A novel bacteriocin from Enterococcus faecalis 478 exhibits a potent activity against vancomycin-resistant enterococci. PLoS ONE 12(10):e0186415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phuttisarikorn T, Phumsombat P, Nitisinpraset S (2018) Optimization of bacteriocin lacnegacin production by Lactococcus lactis KA-FF 1-4. In: The 53th Kasetsart University annual conference book. KURDI Publisher, Bangkok, pp 1092–1099

  • Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in bifidobacteria. Genes Nutr 6(3):285–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microb 97(6):1166–1177

    Article  CAS  Google Scholar 

  • Ríos-Covián D, Arboleya S, Hernandez-Barranco AM, Alvarez-Buylla JR, Ruas-Madiedo P, Gueimonde M, de los Reyes-Gavilan CG (2013) Interactions between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Appl Environ Microbiol 79(23):7518–7524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Saelim K, Sohsomboon N, Kaewsuwan S, Maneerat S (2012) Probiotic properties of Enterococcus faecium CE5-1 producing a bacteriocin-like substance and its antagonistic effect against antibiotic-resistant enterococci in vitro. Czech J Anim Sci 57:529–539

    Article  Google Scholar 

  • Shetty SA, Smidt H, de Vos WM (2019) Reconstructing functional networks in the human intestinal tract using synthetic microbiomes. COBIOT 58:146–154

    CAS  Google Scholar 

  • Shokri D, Zaghian S, Khodabakhsh F, Fazeli H, Mobasherizadeh S, Ataei B (2014) Antimicrobial activity of a UV-stable bacteriocin-like inhibitory substance (BLIS) produced by Enterococcus faecium strain DSH20 against vancomycin-resistant enterococcus (VRE) strains. J Microbiol Immunol Infect 47(5):371–376

    Article  CAS  PubMed  Google Scholar 

  • Stefanaki C, Bacopoulou F, Michos A (2018) The impact of probiotics' administration on glycemic control, body composition, gut microbiome, mitochondria, and other hormonal signals in adolescents with prediabetes—a randomized, controlled trial study protocol. Contemp Clin Trials Commun 11:55–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Cui X, Duan M, Ai C, Song S, Chen X (2019) In vitro fermentation of κ-carrageenan oligosaccharides by human gut microbiota and its inflammatory effect on HT29 cells. J Funct Foods 59:80–91

    Article  CAS  Google Scholar 

  • Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P T 40(4):277–283

    PubMed  PubMed Central  Google Scholar 

  • Verbeke KA, Boobis AR, Chiodini A, Edwards CA, Franck A, Kleerebezem M, Nauta A, Raes J, van Tol EAF, Tuohy KM (2015) Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr Res Rev 28(1):42–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammers WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67(6):2578–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang N, Lyu Y, Zhu X, Bhunia AK, Narsimhan G (2016) Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin. Peptides 85:27–40

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Santisteban Monica M, Rodriguez V, Li E, Ahmari N, Carvajal Jessica M, Zadeh M, Gong M, Qi Y, Zubcevic J, Sahay B, Pepine Carl J, Raizada Mohan K, Mohamadzadeh M (2015) Gut dysbiosis is linked to hypertension. Hypertension 65(6):1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Yasir M, Angelakis E, Bibi F, Azhar EI, Bachar D, Lagier JC, Gaborit B, Hassan AM, Jiman-Fatani AA, Alshali KZ, Robert C, Dutour A, Raoult D (2015) Comparison of the gut microbiota of people in France and Saudi Arabia. Nutr Diabetes 5:e153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeppa G, Conterno L, Gerbi V (2001) Determination of organic acids, sugars, diacetyl, and acetoin in cheese by high-performance liquid chromatography. J Agric Food Chem 49(6):2722–2726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Research and Researcher for Industries (RRI) Scholarship M.S. program (MSD58I0008). Scholarship: The Thailand Research Fund (TRF), MAG, CDIP (Thailand) Co., Ltd. We are grateful to Dr. Gabrila Martínes-Chacón for careful review that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massalin Nakphaichit.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plupjeen, Sn., Chawjiraphan, W., Charoensiddhi, S. et al. Lactococcus lactis KA-FF 1-4 reduces vancomycin-resistant enterococci and impacts the human gut microbiome. 3 Biotech 10, 295 (2020). https://doi.org/10.1007/s13205-020-02282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02282-6

Keywords

Navigation