Skip to main content
Log in

Distinct gut microbiota of healthy children from two different geographic regions of Thailand

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Thailand, food consumption by people from each region is different. This can be an important environmental factor which shapes the gut microbiota further affecting their health. This study aimed to use quantitative PCR (qPCR) to investigate the intestinal microbial community in 60 healthy children (aged 8–11 years) living in specific areas, namely central (CT) and northeastern (NE) Thailand where each region has its own typical food consumption. The children from NE had significantly higher consumption frequency of meat (chicken and beef), a wide variety of carbohydrate sources (noodle, fermented rice and sweet potato) including vegetables and fruit, while in CT, there was a significant preference for rice, breakfast cereal and cow milk. The qPCR analysis resulted in significantly higher abundance of lactobacilli, Clostridium coccoidesEubacterium rectale, Clostridium leptum, Prevotella and Bacteroides fragilis in children from the NE region. However, no significant difference in the count of Bifidobacterium spp., Enterobacteriaceae and methanogens was observed. Considering the correlation of food sources and microbial groups, the consumption frequency of vegetables showed a moderately positive correlation coefficient of 0.42 and 0.34 to the Lactobacillus group (P = 0.001) and the Prevotella group (P = 0.008), respectively, while a diet of fish and beef showed a moderately negative correlation coefficient of −0.41 (P = 0.001) and −0.33 (P = 0.09) to Bifidobacterium spp., respectively. Our results suggested that high frequency consumption of varieties of carbohydrates, protein sources, fruits and vegetables by the NE children promoted a high abundance of bacterial species in the phyla Firmicutes and Bacteroidetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angelakis E, Armougom F, Million M, Raoult D (2012) The relationship between gut microbiota and weight gain in humans. Future Microbiol 7:91–109

    Article  PubMed  Google Scholar 

  • Aragozzini F, Ferrari A, Pacini N, Gualandris R (1979) Indole-3-lactic acid as a tryptophan metabolite produced by Bifidobacterium spp. Appl Environ Microbiol 38:544–546

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  Google Scholar 

  • Bahl MI, Bergstrom A, Licht TR (2012) Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol Lett 329:193–197

    Article  CAS  PubMed  Google Scholar 

  • Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AM, Ramakrishna BS (2010) Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br J Nutr 103:335–338

    Article  CAS  PubMed  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT, McMurdo ME (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70:3575–3581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270

    Article  CAS  PubMed  Google Scholar 

  • Collins MD, Gibson GR (1999) Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr 69:1052s–1057s

    CAS  PubMed  Google Scholar 

  • Collins M, Lawson P, Willems A, Cordoba J, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow J (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bact 44:812–826

    Article  CAS  Google Scholar 

  • Crittenden RG (1999) Prebiotics. In: Tannock GW (ed) Probiotic: a critical review. Horizon Scientific Press, Wymondham, pp 141–156

    Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–14696

    Article  PubMed Central  PubMed  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

    Article  PubMed Central  PubMed  Google Scholar 

  • Dicksved J, Floistrup H, Bergstrom A et al (2007) Molecular fingerprinting of the fecal microbiota of children raised according to different lifestyles. Appl Environ Microbiol 73:2284–2289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed Central  PubMed  Google Scholar 

  • Elsden S, Hilton M (1978) Volatile acid production from threonine, valine, leucine and isoleucine by clostridia. Arch Microbiol 117:165–172

    Article  CAS  PubMed  Google Scholar 

  • Farooq U, Mohsin M, Liu X, Zhang H (2013) Enhancement of short chain fatty acid production from millet fibres by pure cultures of probiotic fermentation. Trop J Pharm Res 12:189–194

    Google Scholar 

  • Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fukui H (1993) Food and population in a northeast Thai village. University of Hawaii Press, Honolulu

  • Hayashi H, Sakamoto M, Benno Y (2002) Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immunol 46:819–831

    Article  CAS  PubMed  Google Scholar 

  • Hooda S, Boler BM, Serao MC, Brulc JM, Staeger MA, Boileau TW, Dowd SE, Fahey GC Jr, Swanson KS (2012) 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr 142:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307

    Article  CAS  PubMed  Google Scholar 

  • Kabeerdoss J, Sankaran V, Pugazhendhi S, Ramakrishna BS (2013) Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case-control study in India. BMC Gastroenterol 13:20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Keatkrai J, Jirapakkul W (2010) Volatile profile of khanom jeen, Thai fermented rice noodles, and the changes during the fermentation process. ScienceAsia 36:46–51

    Article  CAS  Google Scholar 

  • Klaver FAM, Kingma F, Weerkamp AH (1993) Growth and survival of bifidobacteria in milk. Neth Milk Dairy J 47:151–164

    Google Scholar 

  • Konstantinov SR, Smidt H, Akkermans ADL (2005) Ecology and activity of clostridia in the intestine of mammals. In: Durre P (ed) Handbook of Clostridia. CRC Press, Boca Raton, pp 785–794

    Chapter  Google Scholar 

  • Kurakawa T, Kubota H, Tsuji H, Matsuda K, Takahashi T, Ramamurthy T, Nair GB, Takeda Y, Nomoto K (2013) Intestinal Enterobacteriaceae and Escherichia coli populations in Japanese adults demonstrated by the reverse transcription-quantitative PCR and the clone library analyses. J Microbiol Methods 92:213–219

    Article  CAS  PubMed  Google Scholar 

  • Lazzi C, Meli F, Lambertini F et al (2013) Growth promotion of Bifidobacterium and Lactobacillus species by proteinaceous hydrolysates derived from poultry processing leftovers. Int J Food Sci Technol 48:341–349

    Article  CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane G, Cummings J, Allison C (1986) Protein degradation by human intestinal bacteria. J Gen Microbiol 132:1647–1656

    CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM, Stahl DA, Clark DP (2010) Catabolism of organic compounds. Brock biology of microorganism, 13th edn. Benjamin Cummings, San Francisco, pp 372–410

    Google Scholar 

  • Mai V, McCrary QM, Sinha R, Glei M (2009) Associations between dietary habits and body mass index with gut microbiota composition and fecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutr J 8:49

    Article  PubMed Central  PubMed  Google Scholar 

  • Mariat D, Firmesse O, Levenez F, Guimaraes VD, Sokol H, Dore J, Corthier G, Furet JP (2009) The firmicutes/bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:6

    Article  Google Scholar 

  • Marques T, Wall MR, Ross RP, Fitzgerald GF, Ryan CA, Stanton C (2010) Programming infant gut microbiota: influence of dietary and environmental factors. Cur Opin Biotechnol 21:149–156

    Article  CAS  Google Scholar 

  • Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, Tanaka R (2004) Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol 70:167–173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mueller S, Saunier K, Hanisch C et al (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72:1027–1033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nadal I, Santacruz A, Marcos A et al (2009) Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. Int J Obes (Lond) 33:758–767

    Article  CAS  Google Scholar 

  • Nakayama J (2010) Pyrosequence-based 16S rRNA profiling of gastro-intestinal microbiota. Biosci Microflora 29:83–96

    Article  CAS  Google Scholar 

  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, Brandt PA, Stobberingh EE (2011) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521

    Article  Google Scholar 

  • Ravcheev DA, Godzik A, Osterman AL, Rodionov DA (2013) Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks. BMC Genomic 14:873

    Article  Google Scholar 

  • Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol 2:43

    CAS  PubMed  Google Scholar 

  • Rhee SJ, Lee J-E, Lee C-H (2011) Importance of lactic acid bacteria in Asian fermented foods. Microb Cell Fact 10:S5

    Article  PubMed Central  PubMed  Google Scholar 

  • Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97:1166–1177

    Article  PubMed  Google Scholar 

  • Robert C, Bernalier-Donadille A (2003) The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 46:81–89

    Article  CAS  PubMed  Google Scholar 

  • Ruengsomwong S, Korenori Y, Sakamoto N, Wannissorn B, Nakayama J, Nitisinprasert S (2014) Senior Thai fecal microbiota comparison between vegetarians and non-vegetarians using PCR-DGGE and real-time PCR. J Microbiol Biotechnol 24:1026–1033

    Article  PubMed  Google Scholar 

  • Sakamoto N, Tanaka S, Sonomoto K, Nakayama J (2011) 16S rRNA pyrosequencing-based investigation of the bacterial community in nukadoko, a pickling bed of fermented rice bran. Int J Food Microbiol 144:352–359

    Article  CAS  PubMed  Google Scholar 

  • Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA 104:10643–10648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santacruz A, Marcos A, Warnberg J et al (2009) Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity 17:1906–1915

    Article  PubMed  Google Scholar 

  • Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  PubMed  Google Scholar 

  • Seo JM, Ji GE, Cho SH, Park MS, Lee HJ (2007) Characterization of a Bifidobacterium longum BORI dipeptidase belonging to the U34 family. Appl Environ Microbiol 73:5598–5606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seubsman S, Dixon J, Suttinan P, Banwell C (2009) Thai meals. Meals in science and practice: interdisciplinary research and business applications. Woodhead Publishing, Cambridge, pp 413–451

    Chapter  Google Scholar 

  • Sghir A, Gramet G, Suau A, Rochet V, Pochart P, Dore J (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song SJ, Lauber C, Costello EK et al (2013) Cohabiting family members share microbiota with one another and with their dogs. eLife 2:e00458

    PubMed Central  PubMed  Google Scholar 

  • Suau A, Bonnet R, Sutren M, Godon J-J, Gibson GR, Collins MD, Doré J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tannock G (2002) The bifidobacterial and lactobacillus microflora of humans. Clin Rev Allergy Immunol 22:231–253

    Article  PubMed  Google Scholar 

  • Tremaroli V, Backhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  CAS  PubMed  Google Scholar 

  • Tsai F, Coyle W (2009) The microbiome and obesity: is obesity linked to our gut flora? Curr Gastroenterol Rep 11:307–313

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uhe AM, Collier GR, O’Dea K (1992) A comparison of the effects of beef, chicken and fish protein on satiety and amino acid profiles in lean male subjects. J Nutr 122:467–472

    CAS  PubMed  Google Scholar 

  • Van Esterik P (1992) From Marco Polo to McDonald’s: Thai cuisine in transition. Food Foodways 5:177–193

    Article  Google Scholar 

  • Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JBL, Nieuwdorp M (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53:606–613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walker M (1996) A survey of food consumption in Thailand. University of Victoria, UVic Centre for Asia-Pacific Initiatives

    Google Scholar 

  • Walker AW, Ince J, Duncan SH et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson KH, Blitchington RB (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu GD, Chen J, Hoffmann C et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yatsunenko T, Rey FE, Manary MJ et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zoetendal EG, Ben-Amor K, Harmsen HJ, Schut F, Akkermans AD, de Vos WM (2002) Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl Environ Microbiol 68:4225–4232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to all the volunteers who were willing to provide fecal samples for this research. This work was supported by a Royal Golden Jubilee (RGJ) grant, the Thailand Research Fund (TRF) and Kasetsart University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunee Nitisinprasert.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

La-ongkham, O., Nakphaichit, M., Leelavatcharamas, V. et al. Distinct gut microbiota of healthy children from two different geographic regions of Thailand. Arch Microbiol 197, 561–573 (2015). https://doi.org/10.1007/s00203-015-1089-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1089-0

Keywords

Navigation