Skip to main content
Log in

Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Plant bio constituents have the ability to prepare nanoparticles, and usually, plant polyphenols are tested to reduce sodium selenite to selenium nanoparticles (SeNPs). In this work, we showed the biosynthesis of SeNPs using Ocimum tenuiflorum leaf extract. The as obtained SeNPs were in the size range of 15–20 nm and spherical in shape. Also, TEM microscopic images represented the aggregation of crystal structures as extracellular deposits. Moreover, scanning electron microscopy was performed to examine the chemical transition of calcium oxalate (CaC2O4) crystal’s shape and structure due to the influence of SeNPs. SeNPs inhibited the aggregation and growth of CaC2O4 monohydrate crystals and hence the prepared SeNPs could have important prospects in medical and pharmaceutical applications as a potential inhibitor of CaC2O4 urinary stones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Clement IP (1998) Lessons from basic research in selenium and cancer prevention. J Nutr 128:1845–1854

    Article  Google Scholar 

  • Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S, Melotti P, Lleo MM, Vallini G (2016) Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microb Biotechnol 9:758–771

    Article  CAS  Google Scholar 

  • Cui D, Yan C, Miao J, Zhang X, Chen J, Sun L, Meng L, Liang T, Li Q (2018) Synthesis, characterization and antitumor properties of selenium nanoparticles coupling with ferulic acid. Mater Sci Eng 90:104–112

    Article  CAS  Google Scholar 

  • Dhanjal S, Cameotra SS (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil. Microb Cell Fact 9:52–62

    Article  Google Scholar 

  • Ganesan V (2015) Biogenic synthesis and characterization of selenium nanoparticles using the flower of Bougainvillea spectabilis Willd. Int J Sci Res 4:690–695

    Google Scholar 

  • Gautam PK, Kumar S, Tomar MS, Singh RK, Acharya A, Kumar S, Ram B (2017) Selenium nanoparticles induce suppressed function of tumor associated macrophages and inhibit Dalton’s lymphoma proliferation. Biochem Biophys Rep 12:172–184

    PubMed  PubMed Central  Google Scholar 

  • Husen A, Siddiqi KS (2014) Plants and microbes assisted selenium nanoparticles: characterization and application. J Nanobiotechnol 12:1–10

    Article  Google Scholar 

  • Johnson JA, Saboungi M-L, Thiyagarajan P, Csencsits R, Meisel D (1999) Selenium nanoparticles: a small-angle neutron scattering study. J Phys Chem B 103:59–63

    Article  CAS  Google Scholar 

  • Knekt P, Marniemi J, Teppo L, Heliovaara M, Aromaa A (1998) Is low selenium status a risk factor for lung cancer. Am J Epidemiol 148:975–982

    Article  CAS  Google Scholar 

  • Li Q, Chen T, Yang F, Liu J, Zheng W (2010) Facile and controllable one-step fabrication of selenium nanoparticles assisted by l-cysteine. Mater Lett 64:614–617

    Article  CAS  Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  Google Scholar 

  • Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542

    Article  CAS  Google Scholar 

  • Shin Y, Blackwood JM, Bae I, Arey BW, Exarhos GJ (2007) Synthesis and stabilization of selenium nanoparticles on cellulose nanocrystals. Mater Lett 61:4297–4300

    Article  CAS  Google Scholar 

  • Sireesh Babu M (2017) Green synthesis of biocompatible Au–Cu2–xSe heterodimer nanoparticles and their in vitro photothermal assay. Environ Toxicol Pharmacol 53:29–33

    Article  Google Scholar 

  • Sireesh Babu M, Badal Kumar M, Shivendu R, Nandita D (2015) Diastase assisted green synthesis of size controllable gold nanoparticles. RSC Adv 5:26727–26733

    Article  Google Scholar 

  • Sireesh Babu M, Badal Kumar M, Kiran Kumar A (2017a) Environment friendly approach for size controllable synthesis of biocompatible silver nanoparticles using diastase. Environ Toxicol Pharmacol 49:131–136

    Article  Google Scholar 

  • Sireesh Babu M, Badal Kumar M, Kiran Kumar A (2017b) Tyrosine assisted size controlled synthesis of silver nanoparticles and their catalytic and in vitro cytotoxicity evaluation. Environ Toxicol Pharmacol 51:23–29

    Article  Google Scholar 

  • Sireesh Babu M, Jegatheeswaran S, Serap SuzuK Y, Guobin H, Yurong C, Junkuo G, Qingqing N, Yao Juming (2018) Silk sericin induced fabrication of reduced graphene oxide and its in vitro cytotoxicity, photothermal evaluation. J Photochem Photobiol B 186:189–196

    Article  Google Scholar 

  • Sofer Z, Bartůněk V, Junková J, Ulbrich P, Babuněk M, Kuchař M (2016) Synthesis of spherical amorphous selenium nano and microparticles with tunable sizes. Micro Nano Lett 11:91–93

    Article  Google Scholar 

  • Srivastava P, Kowshik M (2016) Anti-neoplastic selenium nanoparticles from Idiomarina sp. PR58-8. Enzyme Microb Technol 95:192–200

    Article  CAS  Google Scholar 

  • Stuke J, Zingaro RA, Cooper WC (1974) Selenium. Van Nostrand Reinhold, New York, p 177

    Google Scholar 

  • Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B 80:94–102

    Article  CAS  Google Scholar 

  • Xia YY (2007) Synthesis of selenium nanoparticles in the presence of silk fibronin. Mater Lett 61:4321–4324

    Article  CAS  Google Scholar 

  • Yu B, Liu T, Du Y, Luo Z, Zheng W, Chen T (2016a) X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy. Colloids Surf B 139:180–189

    Article  CAS  Google Scholar 

  • Yu B, You P, Song M, Zhou Y, Yu F, Zheng W (2016b) A facile and fast synthetic approach to create selenium nanoparticles with diverse shapes and their antioxidation ability. New J Chem 40:1118–1123

    Article  CAS  Google Scholar 

  • Zeng H, Combs GF (2008) Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J Nutr Biochem 19:1–7

    Article  Google Scholar 

  • Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B 88:196–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by characteristic specialty, Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences (No. 2017022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, T., Qiu, X., Ye, X. et al. Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech 10, 23 (2020). https://doi.org/10.1007/s13205-019-1999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1999-7

Keywords

Navigation