Skip to main content
Log in

Expression of Bacillus licheniformis α-amylase in Pichia pastoris without antibiotics-resistant gene and effects of glycosylation on the enzymic thermostability

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Thermostable α-amylases are widely used in industry. The α-amylase from Bacillus licheniformis (BLA) with six potential glycosylation sites possessed excellent thermal and pH stability and high activity. Here, it was expressed in Pichia pastoris. The Pic-BLA-producing yeast without any antibiotics-resistant gene was cultivated in flasks and the amylase activity in fermentation supernatant reached 900 U/mL. The recombinant α-amylase Pic-BLA produced in P. pastoris was deeply glycosylated with 30% increase in molecular mass (MM). The deglycosylation treatment by Endoglycosidase H (Endo H) reduced the MM of Pic-BLA. Thermostability analysis showed that Pic-BLA and deglycosylated Pic-BLA were similar in heat tolerance. In order to eliminate the extra impact of Endo H, the BLA was also expressed in Escherichia coli to get non-glycosylated Eco-BLA. A comparative study between non-glycosylated Eco-BLA and glycosylated Pic-BLA showed no obvious difference in thermostability. It is speculated that the glycosylation has little effect on the thermostability of α-amylase BLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BLA:

Amylase from B. licheniformis

Pic-BLA:

BLA expressed in P. pastoris

Eco-BLA:

BLA expressed in E. coli

Endo H:

Endoglycosidase H

MM:

Molecular mass

GH:

Glycoside hydrolase

References

  • Benoit I et al (2006) Respective importance of protein folding and glycosylation in the thermal stability of recombinant feruloyl esterase A. FEBS Lett 580:5815–5821

    Article  CAS  PubMed  Google Scholar 

  • Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  CAS  PubMed  Google Scholar 

  • Borriss R, Buettner K, Maentsaelae P (1990) Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans: homologies to other beta-glucanases. Mol Gen Genet 222:278–283

    Article  CAS  PubMed  Google Scholar 

  • Bretthauer RK, Castellino FJ (1999) Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem 30:193–200

    CAS  PubMed  Google Scholar 

  • Chang X, Xu B, Bai Y, Luo H, Ma R, Shi P, Yao B (2017) Role of N-linked glycosylation in the enzymatic properties of a thermophilic GH 10 xylanase from Aspergillus fumigatus expressed in Pichia pastoris. PLoS One 12:e0171111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark SE, Muslin EH, Henson CA (2004) Effect of adding and removing N-glycosylation recognition sites on the thermostability of barley α-glucosidase. Protein Eng Des Sel 17:245–249

    Article  CAS  PubMed  Google Scholar 

  • de Winter J (2013) Using the Student’s t-test with extremely small sample sizes. Res Eval 18:1531–7714

    Google Scholar 

  • Dey TB, Kumar A, Banerjee R, Chandna P, Kuhad RC (2016) Improvement of microbial α-amylase stability: strategic approaches. Process Biochem 51:1380–1390

    Article  CAS  Google Scholar 

  • Fields PA (2001) Protein function at thermal extremes: balancing stability and flexibility. Comp Biochem Phys A 2–3:417–431

    Article  Google Scholar 

  • Gurung SP, Schwarz C, Hall JP, Cardin CJ, Brazier JA (2015) The importance of loop length on the stability of i-motif structures. Chem Commun 15:5630–5632

    Article  CAS  Google Scholar 

  • Hiteshi K, Gupta R (2014) Thermal adaptation of α-amylases:a review. Extremophiles 18:937–944

    Article  CAS  PubMed  Google Scholar 

  • Hofemeister J, Kurtz A, Rorriss R, Knowles J (1986) The β-glucanase gene from Bacillus amyloliquefaciens shows extensive homology Bacillus subtilis. Gene 49:177–187

    Article  CAS  PubMed  Google Scholar 

  • Hwang KY et al (1994) Crystal structure of thermostable alpha-amylase from Bacillus licheniformis refined at 1.7 A resolution. Mol Cells 7:251–258

    Google Scholar 

  • Janecek S, Svensson B, MacGregor EA (2014) alpha-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci 71:1149–1170

    Article  CAS  PubMed  Google Scholar 

  • Kikani BA, Singh SP (2011) Single step purification and characterization of a thermostable and calcium independent alpha-amylase from Bacillus amyloliquifaciens TSWK1-1 isolated from Tulsi Shyam hot spring reservoir, Gujarat (India). Int J Biol Macromol 48:676–681

    Article  CAS  PubMed  Google Scholar 

  • Laderman KA, Davis BR, Krutzsch HC, Lewis MS, Griko YV, Privalov PL, Anfinsen CB (1993) The purification and characterization of an extremely thermostable α-amylase from the Hyperthermophilic Archaebacterium Pyrococcus furiosus. J Biol Chem 15:24394–24401

    Article  Google Scholar 

  • Lee CK, Hsu TA, Wu JM (2003) Expression of the gene coding for bacterial hemoglobin improves β-galactosidase production in a recombinant Pichia pastoris. Biotechnol Lett 25:1457–1462

    Article  PubMed  Google Scholar 

  • Li C, Zou S, Huang S, Kaleem I (2013) N-Glycosylation enhances functional and structural stability of recombinant beta-glucuronidase expressed in Pichia pastoris. J Biotechnol 164:75–81

    Article  PubMed  CAS  Google Scholar 

  • MacGregor EA, Janeček Š, Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. BBA Protein Struct Mol Enzymol 1546:1–20

    Article  CAS  Google Scholar 

  • Maley F, Trimble RB, Tarentino AL, PlummerJr TH (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180:195–204

    Article  CAS  PubMed  Google Scholar 

  • Martinez JL (2009) The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci 276:2521–2530

    PubMed  PubMed Central  Google Scholar 

  • Meldgaard M, Svendsen I (1994) Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1,3-1,4)-β-glucanases secreted from yeast. Microbiology 140:159–166

    Article  CAS  PubMed  Google Scholar 

  • Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 1:127–132

    Article  CAS  Google Scholar 

  • Netterstrøm B, Kristensen TS, Damsgaard MT, Olsen O, Sjøl A (1991) Job strain and cardiovascular risk factors: a cross sectional study of employed Danish men and women. Br J Ind Med 48:684–689

    PubMed  PubMed Central  Google Scholar 

  • Pandey A, Nigam P, Soccol C, Soccol V, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  PubMed  Google Scholar 

  • Popowska M, Cytryn E, Markiewicz Z (2017) Antibiotics and antibiotics resistance genes dissemination in soils. Soil Biol Biochem 15:151–190

    Google Scholar 

  • Powers DB et al (2001) Expression of single-chain Fv-Fc fusions in Pichia pastoris. J Immunol Methods 251:123–135

    Article  CAS  PubMed  Google Scholar 

  • Priyadharshini R, Gunasekaran P (2007) Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis. Biotechnol Lett 29:1493–1499

    Article  CAS  PubMed  Google Scholar 

  • Rana N, Walia A, Gaur A (2013) α-Amylases from microbial sources and its potential applications in various industries. Nat Acad Sci Lett 36:9–17

    Article  CAS  Google Scholar 

  • Salyers AA, Gupta A, Wang Y (2004) Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol 12:412–416

    Article  CAS  PubMed  Google Scholar 

  • Sarian FD et al (2017) A new group of glycoside hydrolase family 13 alpha-amylases with an aberrant catalytic triad. Sci Rep 7:44230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp PM, Li WH (1987) The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucl Acids Res 15:1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindhu R, Binod P, Pandey A (2017) 1-α-Amylases. In: Pandey A, Negi S, Soccol CR (eds) Current developments in biotechnology and bioengineering. Elsevier, pp 3–24

  • Sola RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98:1223–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souza PM, Magalhães PO (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41:4

    Google Scholar 

  • Steffan NH, Henry DH, Robert MH, Jeffrey KP, Larry RP (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  Google Scholar 

  • Svensson B (1994) Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol 25:141–157

    Article  CAS  PubMed  Google Scholar 

  • Tai TH, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol 8:297–303

    Article  Google Scholar 

  • Tull D et al (2001) Extensive N-glycosylation reduces the thermal stability of a recombinant alkalophilic Bacillus alpha-amylase produced in Pichia pastoris. Protein Expr Purif 21:13–23

    Article  CAS  PubMed  Google Scholar 

  • van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    Article  PubMed  Google Scholar 

  • Vihinen M, Mäntsälä P (2008) Microbial Amylolytic Enzyme. Crit Rev Biochem Mol Biol 24:329–418

    Article  Google Scholar 

  • Wang Z, Guo C, Liu L, Huang H (2018) Effects of N-glycosylation on the biochemical properties of recombinant bEKL expressed in Pichia pastoris. Enzyme Microb Technol 114:40–47

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wang Y, Tong B, Chen X, Chen J (2018) Purification and biochemical characterization of a thermostable and acid-stable alpha-amylase from Bacillus licheniformis B4-423. Int J Biol Macromol 109:329–337

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhu Q, Zhou N, Tian Y (2016) Optimized expression of prolyl aminopeptidase in Pichia pastoris and its characteristics after glycosylation. World J Microbiol Biotechnol 32:176

    Article  PubMed  CAS  Google Scholar 

  • Zhang GM, Hu Y, Zhuang YH, Ma LX, Zhang XE (2006) Molecular cloning and heterologous expression of an alkaline xylanase from Bacillus pumilus HBP8 in Pichia pastoris. Biocatal Biotransform 24:371–379

    Article  CAS  Google Scholar 

  • Zhang C, Yao J, Zhou C, Mao L, Zhang G, Ma Y (2013) The alkaline pectate lyase PEL168 of Bacillus subtilis heterologously expressed in Pichia pastoris is more stable and efficient for degumming ramie fiber. BMC Biotechnol 13:1

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31670069), Technical Innovation Special Fund of Hubei Province (2017ACA171), and 2016 Wuhan Yellow Crane Talents (Science) Program. Thanks very much to Dr. K.V. Arivizhivendhan for helping us revise the English.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were conceived and designed by XH, PW and GZ. The experiments and data analysis were performed by XH and XY. The manuscript was prepared by XH, NH, TZZ, PW and GZ.

Corresponding authors

Correspondence to Pan Wu or Guimin Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Yuan, X., He, N. et al. Expression of Bacillus licheniformis α-amylase in Pichia pastoris without antibiotics-resistant gene and effects of glycosylation on the enzymic thermostability. 3 Biotech 9, 427 (2019). https://doi.org/10.1007/s13205-019-1943-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1943-x

Keywords

Navigation