Skip to main content
Log in

Inulin chain length modification using a transgenic approach opening new perspectives for chicory

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Chicory capable of synthesizing long-chain inulin is of great interest. During the growing season, the sucrose–sucrose 1-fructosyltransferase (1-SST) activity is vital for production of long-chain inulin in chicory. With the purpose to increase inulin chain length, we employed Agrobacterium-mediated transformation method. Transgenic chicory plants (Cichorium intybus L. var. sativum) cv. ‘Melci’ has been developed to overexpress sucrose–sucrose 1-fructosyltransferase (1-SST) under the control of the CaMV 35S promoter. The integration of the T-DNA into the plant genome was confirmed by PCR on genomic DNA using gene-specific primers. Quantification of the 1-SST transcript expression level revealed that transgenic plants showed higher 1-SST expression than those in non-transgenic plants. Further analyses proved that the fructan content of the roots significantly increased in the transgenic plants. These results revealed that overexpression of the 1-SST, the key gene in inulin biosynthesis in chicory, might serve as a novel approach to develop plants with the long-chain inulin content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.  5

Similar content being viewed by others

References

  • Altenbach D (2005) Structure-function analysis of plant fructosyltransferases. Dissertation, Universität Basel

  • Ameziane R, Limami A, Morot Gaudry JF (1994) Fructan biosynthesis and SST activity in excised leaves of Cichorium intybus L. In: Proceedings second general colloquium on plant sciences, Saint-Malo, 10–12 October 1994. Versailles, Institut de la Recherche Agronomique, pp 123–123

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA, Verma DPS (eds). Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp 1–19

    Google Scholar 

  • Baert JRA (1997) The effect of sowing and harvest date and cultivar on inulin yield and composition of chicory (Cichorium intybus L.) roots. Ind Crops Prod 6:195–199

    Article  CAS  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira AJB, Gonçalves RAC, Chierrito TPC, dos Santos MM, de Souza LM, Gorin PAJ, Sassaki GL, Iacomini M (2011) Structure and degree of polymerisation of fructooligosaccharides present in roots and leaves of Stevia rebaudiana (Bert.) Bertoni. Food Chem 129:305–311

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Edelman J, Jefford TG (1968) The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 67:517–531

    Article  CAS  Google Scholar 

  • Franck A, De Leenheer L (2002) Inulin. In: Baets SD, Vandamme EJ, Steinbüchel A (eds) Polysaccharides II: polysaccharides from eukaryotes, vol 6. Wiley, Berlin, pp 439–479 (Biopolymers)

    Google Scholar 

  • Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108:975–982

    Article  CAS  PubMed  Google Scholar 

  • Hellwege EM, Gritscher D, Willmitzer L, Heyer AG (1997) Transgenic potato tubers accumulate high levels of 1-kestose and nystose: functional identification of a sucrose sucrose 1-fructosyltransferase of artichoke (Cynara scolymus) blossom discs. Plant J 12:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Hendry GAF (1993) Evolutionary origins and natural functions of fructans—a climatological, biogeographic and mechanistic appraisal. New Phytol 123:3–14

    Article  CAS  Google Scholar 

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Kelly G (2008) Inulin-type prebiotics—a review: part 1. Altern Med Rev 13:315–329

    PubMed  Google Scholar 

  • Kip P, Meyer D, Jellema RH (2006) Inulins improve sensoric and textural properties of low-fat yoghurts. Int Dairy J 16:1098–1103

    Article  CAS  Google Scholar 

  • Koch K, Andersson R, Rydberg I, Aman P (1999) Influence of harvest date on inulin chain length distribution and sugar profile for six chicory (Cichorium intybus L.) cultivars. J Sci Food Agric 79:1503–1506

    Article  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Kusch U, Greiner S, Steininger H, Meyer AD, Corbière-Divialle H, Harms K, Rausch T (2009) Dissecting the regulation of fructan metabolism in chicory (Cichorium intybus) hairy roots. New Phytol 184:127–140

    Article  CAS  PubMed  Google Scholar 

  • Livingston DP III, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroufi A (2005) RNA interference (RNAI) as a tool to engineer high nutritional value in chicory (Cichorium intybus). Commun Agric Appl Biol Sci 71:75–78

    Google Scholar 

  • Maroufi A, Bockstaele EV, Loose MD (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR. BMC Mol Biol 11:15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroufi A, Karimi M, Mehdikhanlou K, Van Bockstaele E, De Loose M (2012) Regeneration ability and genetic transformation of root type chicory (Cichorium intybus var. sativum). Afr J Biotechnol 11:11874–11886

    CAS  Google Scholar 

  • Morris C, Morris GA (2012) The effect of inulin and fructo-oligosaccharide supplementation on the textural, rheological and sensory properties of bread and their role in weight management: a review. Food Chem 133:237–248

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritsema T, Smeekens S (2003) Fructans: beneficial for plants and humans. Curr Opin Plant Biol 6:223–230

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid MB (2007a) Prebiotics: the concept revisited. J Nutr 137:830S–837S

    Article  CAS  PubMed  Google Scholar 

  • Roberfroid MB (2007b) Inulin-type fructans: functional food ingredients. J Nutr 137:2493S–2502S

    Article  CAS  PubMed  Google Scholar 

  • Sévenier R, Hall RD, van der Meer IM, Hakkert HJC, van Tunen AJ, Koops AJ (1998) High level fructan accumulation in a transgenic sugar beet. Nat Biotechnol 16:843–846

    Article  PubMed  Google Scholar 

  • Sprenger N, Schellenbaum L, van Dun K, Boller T, Wiemken A (1997) Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose:fructan 6-fructosyltransferase. FEBS Lett 400:355–358

    Article  CAS  PubMed  Google Scholar 

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

    Article  CAS  PubMed  Google Scholar 

  • van Arkel J (2013) Fructan biosynthesis in crop plants—the molecular regulation of fructan biosynthesis in chicory (Cichorium intybus L.). Dissertation, Wageningen University

  • Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25:803–813

    Article  Google Scholar 

  • Van Waes C, Baert J, Carlier L, Van Bockstaele E (1998) A rapid determination of the total sugar content and the average inulin chain length in roots of chicory (Cichorium intybus L). J Sci Food Agric 76:107–110

    Article  Google Scholar 

  • van Arkel J, Vergauwen R, Sévenier R, Hakkert JC, van Laere A, Bouwmeester HJ, Koops AJ, van der Meer IM (2012) Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.). J Plant Physiol 169:1520–1529

    Article  CAS  PubMed  Google Scholar 

  • Van den Ende W, Van Laere A (1996) De-novo synthesis of fructans from sucrose in vitro by a combination of two purified enzymes (sucrose:sucrose fructosyl transferase and fructan:fructan fructosyl transferase) from chicory roots (Cichorium intybus L.). Planta 200:335–342

    Article  Google Scholar 

  • Van den Ende W, De Roover J, Van Laere A (1996a) In vitro synthesis of fructofuranosyl-only oligosaccharides from inulin and fructose by purified chicory root fructan:fructan fructosyl transferase. Physiol Plant 97:346–352

    Article  Google Scholar 

  • Van den Ende W, Van Wonterghem D, Dewil E, Verhaert P, De Loof A, Van Laere A (1996b) Purification and characterization of 1-SST, the key enzyme initiating fructan biosynthesis in young chicory roots (Cichorium intybus). Physiol Plant 98:455–466

    Article  Google Scholar 

  • Van den Ende W, Michiels A, De Roover J, Verhaert P, Van Laere A (2000) Cloning and functional analysis of chicory root fructan1-exohydrolase I (1-FEH I): a vacuolar enzyme derived from a cell-wall invertase ancestor? Mass fingerprint of the 1-FEH I enzyme. Plant J 24:447–456

    Article  PubMed  Google Scholar 

  • Van den Ende W, Michiels A, Van Wonterghem D, Clerens SP, De Roover J, Van Laere AJ (2001) Defoliation induces fructan 1-exohydrolase II in witloof chicory roots. Cloning and purification of two isoforms, fructan 1-exohydrolase IIa and fructan 1-exohydrolase IIb. Mass fingerprint of the fructan 1-exohydrolase II enzymes. Plant Physiol 126:1186–1195

    Article  PubMed  PubMed Central  Google Scholar 

  • Van den Ende W, Coopman M, Clerens S, Vergauwen R, Le Roy K, Lammens W, Van Laere A (2011) Unexpected presence of graminan- and levan-type fructans in the evergreen frost-hardy eudicot Pachysandra terminalis (Buxaceae): purification, cloning, and functional analysis of a 6-SST/6-SFT enzyme. Plant Physiol 155:603–614

    Article  CAS  PubMed  Google Scholar 

  • van der Meer IM, Koops AJ, Hakkert JC, van Tunen AJ (1998) Cloning of the fructan biosynthesis pathway of Jerusalem artichoke. Plant J 15:489–500

    Article  PubMed  Google Scholar 

  • Ye XD, Wu XL, Zhao H, Frehner M, Nösberger J, Potrykus I, Spangenberg G (2001) Altered fructan accumulation in transgenic Lolium multiflorum plants expressing a Bacillus subtilis sacB gene. Plant Cell Rep 20:205–212

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Martine De Cock and Dr. Jafar Afshinfar for help with editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad Maroufi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10678 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroufi, A., Karimi, M., Mehdikhanlou, K. et al. Inulin chain length modification using a transgenic approach opening new perspectives for chicory. 3 Biotech 8, 349 (2018). https://doi.org/10.1007/s13205-018-1377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1377-x

Keywords

Navigation