Skip to main content
Log in

Assessment of chemical and genetic variability in Tanacetum gracile accessions collected from cold desert of Western Himalaya

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Genetic diversity is essential for survival and adaptation of high altitude plants such as those of Tanacetum genus, which are constantly exposed to environmental stress. We collected flowering shoots of ten accessions of Tanacetum gracile Hook.f. & Thomson (Asteraceae) (Tg 1–Tg 10), from different regions of cold desert of Western Himalaya. Chemical profile of the constituents, as inferred from GC–MS, exhibited considerable variability. Percentage yield of essential oil ranged from 0.2 to 0.75% (dry-weight basis) amongst different accessions. Tg 1 and Tg 6 were found to produce high yields of camphor (46%) and lavandulol (41%), respectively. Alpha-phellendrene, alpha-bisabool, p-cymene and chamazulene were the main oil components in other accessions. Genetic variability among the accessions was studied using RAPD markers as well as by sequencing and analyzing nuclear 18S rDNA, and plastid rbcL and matK loci. The polymorphic information content (PIC) of RAPD markers ranged from 0.18 to 0.5 and the analysis clustered the accessions into two major clades. The present study emphasized the importance of survey, collection, and conservation of naturally existing chemotypes of medicinal and aromatic plants, considering their potential use in aroma and pharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abad MJ, Bermejo P, Valverde S, Villar A (1994) Anti-inflammatory activity of hydroxyachillin, a sesquiterpene lactone from Tanacetum microphyllum. Planta Med 60:228 – 31

    Article  CAS  PubMed  Google Scholar 

  • Abad MJ, Bermejo P, Villar A (1995) An approach to the genus Tanacetum L. (Compositae): phytochemical and pharmacological review. Phytother Res 9:79–92

    Article  CAS  Google Scholar 

  • Ahmadi L, Mirza M, Shahmir F (2002) The volatile constituents of Artemisia marschaliana sprengel and its secretory elements. Flavour Fragr J 17:141–143

    Article  CAS  Google Scholar 

  • Bagci E, Kursat M, Kocak A, Gur S (2008) Composition and antimicrobial activity of the essential oils of Tanacetum balsamita L. subsp. balsamita and T. chiliophyllum (Fisch. et Mey.) Schultz Bip. var. chiliophyllum (Asteraceae) from Turkey. J Essent Oil Bear Pl 11:476–484

    Article  CAS  Google Scholar 

  • Bardakci F (2001) Random amplified polymorphic DNA (RAPD) markers. Turk J Biol 25:185–196

    CAS  Google Scholar 

  • Baser KHC, Demirci B, Tabanca N, Ozek T, Goren N (2001) Composition of the essential oils of Tanacetum armenum (DC.) Schultz Bip., T. balsamita L. T. chiliophyllum (Fisch. & Mey) Schultz Bip. var. chiliophyllum and T. haradjani (Rech. fil.) Grierson and the enantiomeric distribution of camphor and carvone. Flavour Fragr J 16:195–200

    Article  CAS  Google Scholar 

  • Beauchamp P, Dev V, Kashyap T, Melkani A, Mathela C, Bottini AT (2001) Composition of the essential oil of Tanacetum nubigenum Wallich ex DC. J Essent Oil Res 13:319–323

    Article  CAS  Google Scholar 

  • Chahota RK, Sharma V, Ghani M, Sharma TR, Rana JC, Sharma SK (2017) Genetic and phytochemical diversity analysis in Bunium persicum populations of north-western Himalaya. Physiol Mol Biol Plants 23:429–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanotiya CS, Sammal SS, Mathela CS (2005) Composition of a new chemotype of Tanacetum nubigenum. Indian J Chem 44(B):1922–1926

    Google Scholar 

  • Chauhan RS, Nautiyal BP, Nautiyal MC (2013) Trade of threatened Himalayan medicinal and aromatic Plants-socioeconomy, management and conservation issues in Garhwal Himalaya, India. Global J Pathol Microbiol 13:9–18

    Google Scholar 

  • Christaki E, Bonos E, Giannenas I, Florou-Paneri P (2012) Aromatic plants as a source of bioactive compounds. Agriculture 2:228–243

    Article  Google Scholar 

  • Ciccarelli D, Garbari F, Pagni AM (2008) The flower of Myrtus communis (Myrtaceae): secretory structures, unicellular papillae, and their ecological role. FLORA 203:85–93

    Article  Google Scholar 

  • Committee on drugs (1994) Camphor revisited: focus on toxicity. Pediatrics 94:127–128

    Google Scholar 

  • Croteau R, Shaskus J (1985) Biosynthesis of monoterpenes: demonstration of a geranyl pyrophosphate:(-)-bornyl pyrophosphate cyclase in soluble enzyme preparations from tansy (Tanacetum vulgare). Arch Biochem Biophys 236:535–43

    Article  CAS  PubMed  Google Scholar 

  • Dar MY, Shah WA, Rather MA, Qurishi Y, Hamid A, Qurishi MA (2011) Chemical composition, in vitro cytotoxic and antioxidant activities of the essential oil and major constituents of Cymbopogon jawarancusa (Kashmir). Food Chem 129:1606–1611

    Article  CAS  Google Scholar 

  • Das N, Chattopadhyay KK (2013) Change in climate—a threat to Eastern Himalayan biodiversity. JTBSRR 2:89–107

    Google Scholar 

  • Demissie ZA, Erland LAE, Rheault MR, Mahmoud SS (2013) The biosynthetic origin of irregular monoterpenes in lavandula isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase. J Biol Chem 288:6333–6341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djilani A, Dicko A (2012) The Therapeutic benefits of essential oils. In: Bouayed J ed. Nutrition, Well-Being and Health. InTech Europe, London 155–178

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Am 19:11–15

    Google Scholar 

  • Ehtesham-Gharaee M, Hoseini BA, Khayyat MH, Emami SA, Asili J, Shakeri A, Hassani M, Ansari A, Arabzadeh S, Kasaian J, Behravan J (2017) Essential oil diversity and molecular characterization of Ephedra species using RAPD analysis. Res J Pharmacogn 4:21–27

    Google Scholar 

  • Esmaeili A, Amiri H, Rezazadeh S (2009) The essential oils of Tanacetum pinnatum Boiss. a composite herbs growing wild in Iran. J Med Plants 3:44–49

    Google Scholar 

  • Franz C, Novak J (2015) Sources of essential oils. In: Baser K.H.C., Buchbauer G (eds) Handbook of essential oils: science, Technology, and applications. CRC Press, New York, 6–43

    Google Scholar 

  • Gandhi SG, Mahajan V, Bedi YS (2015) Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta 241:303–317

    Article  CAS  PubMed  Google Scholar 

  • Giachino RRA, Sonmez C, Tonk GA, Bayram E, Yuce S, Telci I, Furan MA (2014) RAPD and essential oil characterization of Turkish basil (Ocimum basilicum L.). Plant Syst Evol 300:1779–1791

    Article  Google Scholar 

  • Gilbert M (2011) Flora of China. http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=250097902

  • Habibi Z, Biniyaz T, Ghodrati T, Masoudi S, Rustaiyan A (2007) Constituents of Tanacetum paradoxum Bornm. and Tanacetum tabrisianum (Boiss.) Sosn. et Takht., from Iran. JEOR 19:11–13

    Article  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effect of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B Biol Sci 351:1291–1298

    Article  Google Scholar 

  • Hendriks H, Elst DJD, van der, Putten FMS, Van, Bos R (2011) The Essential Oil of Dutch Tansy (Tanacetum vulgare L.). JEOR 2:155 – 62

  • Hintze J (2007) NCSS, LLC. Kaysville, Utah USA. http://www.ncss.com. Accessed 30 April 2014

  • Hollingsworth PM (2011) Refining the DNA Barcode for land plants. Proc Natl Acad Sci 108:19451–19452

    Article  PubMed  Google Scholar 

  • Hunter WN (2007) The non-mevalonate Pathway of Isoprenoid Precursor Biosynthesis. J Biol Chem 282:21573–21577

    Article  CAS  PubMed  Google Scholar 

  • Jones N, Ougham H, Thomas H, Pasakinskiene I (2009) Markers and mapping revisited: finding your gene. New Phytol 183:935–966

    Article  CAS  PubMed  Google Scholar 

  • Kachroo P, Sapru BL (1977) Flora of Ladakh. Bishen Singh Mahendra Pal Singh, Dehradun, pp 1–172

  • Kamble RN, Mehta PP, Shinde VM (2014) Aromatherapy as complementary and alternative medicine-systematic review. World J Pharm Res 3:144–160

    Google Scholar 

  • Kazi MA, Reddy CRK, Jha B (2013) Molecular phylogeny and barcoding of Caulerpa (Bryopsidales) based on the tufA, rbcL, 18S rDNA and ITS rDNA genes. PloS One 8:e82438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keskitalo M, Lindén A, Valkonen JPT (1998) Genetic and morphological diversity of Finnish tansy (Tanacetum vulgare L., Asteraceae). Theor Appl Genet 96:1141–1150

    Article  Google Scholar 

  • Keskitalo M, Pehu E, Simon J (2001) Variation in volatile compounds from tansy (Tanacetum vulgare L.) related to genetic and morphological differences of genotypes. Biochem Syst Ecol 29:267–285

    Article  CAS  PubMed  Google Scholar 

  • Kiritikar KR, BB (1988) Indian Medicinal Plants. Bishen Singh Mahendra Pal Singh, Dehradun, pp 1–674

  • Kitchlu S, Bakshi SK, Kaul MK, Bhan MK, Thapa RK, Agarwal SG (2006) Tanacetum gracile Hook. f & T. A new source of lavandulol from Ladakh Himalaya (India). Flavour Fragr J 21:690–692

    Article  CAS  Google Scholar 

  • Kocyan A, Qiu YL, Endress PK, Conti E (2004) A phylogenetic analysis of Apostasioideae (Orchidaceae) based on ITS, trnL-F and matK sequences. Plant Syst Evol 247:203–213

    Article  CAS  Google Scholar 

  • Koli B, Gochar R, Meena SR, Chandra S, Bindu K (2018) Domestication and nutrient management of Monarda citriodora Cer.ex Lag. in sub tropical region of Jammu (India). Int J Chem Studies 6:1259–1263

    Google Scholar 

  • Kress WJ (2017) Plant DNA Barcodes: Applications today and in the future. J Syst Evol 55:291–307

    Article  Google Scholar 

  • Lohani H, Chauhan N, Andola HC (2012) Chemical composition of the essential oil of two Tanacetum species alpine region in Indian Himalaya. Natl Acad Sci Lett 35:95–97

    Article  CAS  Google Scholar 

  • Magiatis P, Skaltsounis AL, Chinou I, Haroutounian SA (2002) Chemical composition and in-vitro antimicrobial activity of the essential oils of three Greek Achillea species. Zeitschrift für Naturforschung. C 57:287–90

    Article  CAS  Google Scholar 

  • Mahajan V, Rather IA, Awasthi P, Anand R, Gairola S, Meena SR, Gandhi SG (2015a) Development of chemical and EST-SSR markers for Ocimum genus. Ind Crops Prod 63:65–70 a .

    Article  CAS  Google Scholar 

  • Mahajan V, Sharma N, Kumar S, Bhardwaj V, Ali A, Khajuria RK, Gandhi SG (2015b) Production of rohitukine in leaves and seeds of Dysoxylum binectariferum: An alternate renewable resource. Pharm Biol 53:446–450

    Article  CAS  PubMed  Google Scholar 

  • Mathela CS, Padalia RC, Joshi RK (2008) Variability in fragrance constituents of Himalayan Tanacetum species commercial potential. J Essent Oil Bear Pl 11:503–513

    Article  CAS  Google Scholar 

  • McCullough DW, Bhupathy M, Piccolino E, Cohen T (1991) Highly efficient terpenoid pheromone syntheses via regio- and stereocontrolled processing of allyllithiums generated by reductive lithiation of allyl phenyl thioethers. Tetrahedron 47:9727–9736

    Article  CAS  Google Scholar 

  • Mohsenzadeh F, Chehregan A, Amiri H (2011) Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum parthenium in different developmental stages. Pharm Biol 49:920–926

    Article  CAS  PubMed  Google Scholar 

  • Nano GM, Bicchi C, Frattini C, Gallino M (1979) Wild Piedmontese plants. II. A rare chemotype of Tanacetum vulgare L., abundant in Piedmont (Italy). Planta Med 35:270–274

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76:5269–5273

    Article  CAS  PubMed  Google Scholar 

  • Polunin O, Stainton A (1984) Flowers of the Himalaya. Oxford University Press, New Delhi, pp 1–580

    Google Scholar 

  • Ratha KK, Mishra SS, Arya JC, Joshi GC (2012) Impact of climate change on diversity of Himalayan medicinal plant: A threat to ayurvedic system of medicine. Int J Res Ayurveda Pharm 3:327–331

    Google Scholar 

  • Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, Loose MDe (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134

    Article  Google Scholar 

  • Rozza AL, Pellizzon CH (2013) Essential oils from medicinal and aromatic plants: A review of the gastroprotective and ulcer-healing activities. Fundam Clin Pha 27:51–63

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Samant SS, Butola JS, Sharma A (2007) Assessment of diversity, distribution, conservation status and preparation of management plan for medicinal plants in the catchment area of parbati hydroelectric project stage- III in Northwestern Himalaya. J Mt Sci 4:34–56

    Article  Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Regul 34:3–21

    Article  CAS  Google Scholar 

  • Stappen I, Tabanca N, Ali A, Wedge DE, Wanner J, Kaul VK, Lal B, Jaitak V, Gochev VK, Schmidt E, Jirovetz L (2015a) Chemical composition and biological activity of essential oils from wild growing aromatic plant species of Skimmia laureola and Juniperus macropoda from Western Himalaya. Nat Prod Commun 10:1071–1074

    PubMed  Google Scholar 

  • Stappen I, Tabanca N, Ali A, Wedge DE, Wanner J, Kaul VK, Lal B, Jaitak V, Gochev VK, Schmidt E, Jirovetz L (2015b) Chemical composition and biological activity of essential oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya. Nat Prod Commun 10:33–138

    Google Scholar 

  • Tétényi P, Kaposi P, Héthelyi E (1975) Variations in the essential oils of Tanacetum vulgare. Phytochemistry 14:1539–1544

    Article  Google Scholar 

  • Verma M, Singh SK, Bhushan S, Pal HC, Kitchlu S, Koul MK, Saxena AK (2008) Induction of mitochondrial-dependent apoptosis by an essential oil from Tanacetum gracile. Planta Med 74:515–520

    Article  CAS  PubMed  Google Scholar 

  • Vieira RF, Grayer RJ, Paton A, Simon JE (2001) Genetic diversity of Ocimum gratissimum L. based on volatile oil constituents, flavonoids and RAPD markers. Biochem Syst Ecol 29:287–304

    Article  CAS  PubMed  Google Scholar 

  • Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weyerstahl P, Marschall H, Thefeld K, Rustaiyan A (1999) Constituents of the essential oil of Tanacetum (syn.Chrysanthemum) fruticulosum Ledeb. from Iran. Flavour Fragr J 14:112–120

    Article  CAS  Google Scholar 

  • Yamagishi M, Nishioka M, Kondo T (2009) Phenetic diversity in the Fritillaria camschatcensis population grown on the Sapporo campus of Hokkaido University. Landsc Ecol Eng 6:75–79

    Article  Google Scholar 

Download references

Acknowledgements

VM and RC were supported by CSIR-Senior/Junior research fellowships, respectively. SGG acknowledges the financial support for this work from CSIR 12th FYP projects ‘BioprosPR’ (BSC0106) of Council of Scientific and Industrial Research (CSIR).

Author information

Authors and Affiliations

Authors

Contributions

VM carried out genetic marker studies, wrote the manuscript and prepared figures. RC helped VM in preparation of manuscript and figures. SK and SK collected T. gracile accessions and carried out extraction of essential oil. BS performed taxonomical identification and authentication of plant. KB performed GC-MS of the essential oils. SGG designed the study and edited the manuscript and figures. YSB and SK provided critical inputs for the study as well as during preparation of manuscript.

Corresponding author

Correspondence to Sumit G. Gandhi.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 KB)

Supplementary material 2 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, V., Chouhan, R., Kitchlu, S. et al. Assessment of chemical and genetic variability in Tanacetum gracile accessions collected from cold desert of Western Himalaya. 3 Biotech 8, 284 (2018). https://doi.org/10.1007/s13205-018-1299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1299-7

Keywords

Navigation