Skip to main content

Advertisement

Log in

Effect of different physico-chemical parameters for natural indigo production during fermentation of Indigofera plant biomass

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Natural indigo production from Indigofera plant biomass requires fermentation of biomass, oxidation of fermented broth, settling of oxidized product (indigo), filtration and recovery. In this study, we have investigated roles of physico-chemical parameters during fermentation with respect to product yield. The study showed that water-to-biomass ratio (1:10), fermentation duration (0, 6, 12, 18, 24 h), pH (6–7.5), dissolved oxygen concentration; DO (0.5–3 mg ml−1), oxidation reduction potential ORP (+50 to −300 mV) and temperature (25–40 °C) during fermentation, oxidation and dye recovery from the broth are directly or indirectly related to indigo yield. Biomass fermentation for 12 h at 40 °C incubation temperature yields the highest biogenic indigo (2.84 mg g−1) out of the different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anon (1992) Dyestuffs and pigments. In: Business Monitor PAS 2516. Central Statistical Office, HMSO, London, p 6

  • Balamurugan G, Selvarajan S (2009) Preliminary photochemical screening and anthelmintic activity of Indigofera tinctoria Linn. Int J Drug Dev Res 1:167–170

    Google Scholar 

  • Barrera-Islas GA, Ramos-Valdivia AC, Salgado LM, Ponce-Noyola T (2007) Characterization of a β-glucosidase produced by a high specific growth rate mutant of Cellulomonas flavigena. Curr Microbiol 54:266–270. doi:10.1007/s00284-006-0105-7

    Article  CAS  Google Scholar 

  • Berovic M (1999) Scale-up of citric acid fermentation by redox potential control. Biotechnol Bioeng 64:552–557. doi:10.1002/(SICI)1097-0290

    Article  CAS  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria VS (2002) Microbial beta-glucosidase: clones, properties and applications. Crit Rev Biotechnol 22:375–407. doi:10.1080/07388550290789568

    Article  CAS  Google Scholar 

  • Calik P, Yilgor P, Ayhan P, Demir AS (2004) Oxygen transfer effects on recombinant benzaldehyde lyase production. Chem Eng Sci 59:5075–5083

    Article  CAS  Google Scholar 

  • Chan LK, Koay SS, Boey PL, Bhatt A (2010) Effects of Abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biol Res 43:127–135. doi:10.4067/S0716-97602010000100014

    Article  CAS  Google Scholar 

  • Chanayath N, Lhieochaiphant S, Phutrakul S (2002) Pigment extraction techniques form the leaves of Indigofera tinctoria Linn. and Baphicacanthus cusia Brem. and chemical structure analysis of their major components. CMU J 1:149–160

    Google Scholar 

  • Christie RM (2007) Why is indigo blue. Biotechnic & Histochem 82:51–56. doi:10.1080/00958970701267276

    Article  CAS  Google Scholar 

  • Chung JS, Zhu JK, Bressan RA, Hasegawa PM, Shi H (2008) Reactive oxygen species mediate Na+-induced SOS1 mRNA stability in Arabidopsis. Plant J 53:554–565. doi:10.1111/j.1365-313X.2007.03364.x

    Article  CAS  Google Scholar 

  • Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222:167–169 (PMID: 6353574)

    Article  CAS  Google Scholar 

  • Epstein E, Nabors MW, Stowe BB (1967) Origin of indigo of woad. Nature 216:547–549. doi:10.1038/216547a0

    Article  CAS  Google Scholar 

  • Ergashev A (2009) Cultivation of Indigo plant, biotechnology of natural dyes and improving the soil ecology. The GEF Small Grants Programme, UNESCO, Tashkent, pp 4–20

    Google Scholar 

  • Erickson LE, Fung DY (1988) Handbook on anaerobic fermentations. Dekker, New York

    Google Scholar 

  • Fitzhugh W (1997) Artist’s pigments, a handbook of their history and characteristics, vol 3. Oxford University Press, Oxford

    Google Scholar 

  • Fredlund E, Blank LM, Schnurer J, Sauer U, Passoth V (2004) Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microb 70:5905–5911. doi:10.1128/AEM.70.10.5905-5911.2004

    Article  CAS  Google Scholar 

  • Gilbert KG, Cooke DT (2001) Dyes from plants: past usage, present understanding and potential. Plant Growth Regul 34:57–69. doi:10.1023/A:1013374618870

    Article  CAS  Google Scholar 

  • Haucke G, Graness G (1995) Thermal isomerization of indigo. Angew Chem Int Ed Engl 34:67–68. doi:10.1002/anie.199500671

    Article  CAS  Google Scholar 

  • Hong SH, Lee SY (2002) Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 58:286–290. doi:10.1007/s00253-001-0899-y

    Article  CAS  Google Scholar 

  • Jacquemin D, Preat J, Wathelet V, Perpète E (2006) Substitution and chemical environment effects on the absorption spectrum of indigo. J Chem Phys 124(7):074104. doi:10.1063/1.2166018

    Article  Google Scholar 

  • Jain S, Nayak S, Joshi P (2010) Phytochemical study and physical evaluation of Indigofera tinctoria leaves. Int J Compr Pharm 1:1–5

    Google Scholar 

  • Karaman S, Diraz E, Comlekcioglu N, Ilcim A, Durdu H, Tansi S (2015) High yielding indigo sources in native Isatis (Brassicaceae) taxa from Turkey. Genet Resour Crop Evol 63:531–543

    Article  Google Scholar 

  • Kastner JR, Eiteman MA, Lee SA (2003) Effect of redox potential on stationary-phase xylitol fermentations using Candida tropicalis. Appl Microbiol Biotechnol 63:96–100. doi:10.1007/s00253-003-1320-9

    Article  CAS  Google Scholar 

  • Kaufman PB, Cseke LJ, James SW, Harry AD, Briefmann L (1999) Bioseparation of compounds in natural product from plants. CRC Press, London, pp 207–240

    Google Scholar 

  • Kim JY, Lee JY, Shin YS, Kim GJ (2010) Characterization of an indican hydrolyzing enzyme from Sinorhizobium meliloti. Process Biochem 45:892–896. doi:10.1016/j.procbio.2010.02.017

    Article  CAS  Google Scholar 

  • Laitonjam WS, Wangkheirakpam SD (2011) Comparative study of the major components of the indigo dye obtained from Strobilanthes flaccidifolius Nees. and Indigofera tinctoria Linn. Int J Plant Physiol Biochem 3:108–116

    CAS  Google Scholar 

  • Martin AB, Alcon A, Santos VE, Garcia-Ochoa F (2005) Production of a biocatalyst of Pseudomonas putida CECT5279 for DBT bio desulfurization: influence of the operational conditions. Energy Fuel 19:775–782. doi:10.1021/ef0400417

    Article  CAS  Google Scholar 

  • Martin F, Ebel B, Rojas C, Gervais P, Cayot N, Cachon R (2013) Redox potential: monitoring and role in development of aroma compounds, rheological properties and survival of oxygen sensitive strains during the manufacture of fermented dairy products. Unité Procédés Alimentaires et Microbiologiques 3:71–94. doi:10.5772/51137

    Google Scholar 

  • Martin-Leake H (1975) An historical memoir of the indigo industry in Bihar. Econ Bot 29:361–371. doi:10.1007/BF02862183

    Article  Google Scholar 

  • Maugard T, Enaud E, Choisy P, Legoy MD (2001) Identification of an indigo precursor from leaves of Isatis tinctoria (Woad). Phytochemistry 58:897–904

    Article  CAS  Google Scholar 

  • Maugard T, Enaud E, Sayette A, Choisy P, Legoy MD (2002) β-Glucosidase-catalyzed hydrolysis of indican from leaves of Polygonum tinctorium. Biotechnol Process 18:1104–1108. doi:10.1021/bp025540

    Article  CAS  Google Scholar 

  • Minami Y, Kanafuji T, Miura K (1996) Purification and characterization of a β-glucosidase from Polygonum tinctorium, which catalyzes preferentially the hydrolysis of indican. Biosci Biotech Biochem 60:147–149. doi:10.1271/bbb.60.147

    Article  CAS  Google Scholar 

  • Minami Y, Takao H, Kanafuji T, Miura K, Kondo M (1997) β-Glucosidase in the indigo plant: intracellular localization and tissue specific expression in leaves. Plant Cell Physiol 38:1069–1074

    Article  CAS  Google Scholar 

  • Morison JIL, Lawlor DW (1999) Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ 22:659–682. doi:10.1046/j.1365-3040.1999.00443.x

    Article  CAS  Google Scholar 

  • Narayan MS, Thimmaraju R, Bhagyalakshmi N (2005) Interplay of growth regulators during solid state and liquid state batch cultivation of anthocyanin producing cell line of Daucus carota. Process Biochem 40:351–358. doi:10.1016/j.procbio.2004.01.009

    Article  CAS  Google Scholar 

  • Puchalska M, Pawlak KP, Zadrozna I, Hryszko H, Jarosz M (2004) Identification of indigoid dyes in natural organic pigments used in historical art objects by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. J Mass Spectrom 39:1441–1449. doi:10.1002/jms.728

    Article  CAS  Google Scholar 

  • Roessler A, Jin X (2003) State of the art technologies and new electrochemical methods for the reduction of vat dyes. Dyes Pigment 59:223–235. doi:10.1016/S0143-7208(03)00108-6

    Article  CAS  Google Scholar 

  • Sandoval S, Mendez C, Cardador A (2010) Preliminary study of the indican production in tissue cultures of Indigofera suffruticosa Mill. 8:1–7. http://www.e-gnosis.ndg.mx/vol8/art4

  • Schunk E (1955) On the formation of indigo blue. Philos Mag Ser. 10:74–95

    Google Scholar 

  • Seldes A, Burucua JE, Maier MS, Abad G, Jauregui A, Siracusano G (1999) Blue pigments in South American painting (1610–1780). J Am Inst Conserv 38:100–123. doi:10.2307/3180041

    Google Scholar 

  • Sewekow U (1988) Natural dyes—an alternative to synthetic dyes. Melliand Textilber. 69:271–276

    Google Scholar 

  • Shin Y, Yoo DI, Kim K (2014) Process balance of natural indigo production based on traditional Niram method. Text Color Finish 24:253–259. doi:10.5764/TCF.2012.24.4.253

    Article  Google Scholar 

  • Singh R, Sharma S, Sharma V (2015) Comparative and quantitative analysis of antioxidant and scavenging potential of Indigofera tinctoria Linn. extracts. J Integr Med 13:269–278. doi:10.1016/S2095-4964(15)60183-2

    Article  Google Scholar 

  • Stoker KG, Cooke DT, Hill DJ (1998a) An improved method for the large-scale processing of woad (Isatis tinctoria) for possible commercial production of woad indigo. J Agric Eng Res 7:315–320. doi:10.1006/jaer.1998.0329

    Article  Google Scholar 

  • Stoker KG, Cooke DT, Hill DJ (1998b) Influence of light on natural indigo production from woad (Isatis tinctoria). Plant Growth Regul 25:181–187. doi:10.1023/A:1006042331385

    Article  CAS  Google Scholar 

  • Teanglum A, Teanglum S, Saithiong A (2012) Selection of indigo plant varieties and other plants that yield Indigo dye. Proc Eng 32:184–190. doi:10.1016/j.proeng.2012.01.1255

    Article  Google Scholar 

  • Toonkool P, Metheenukul P, Sujiwattanarat P, Paiboon P, Tongtubtim N, Keudat-Carins M (2006) Expression and purification of dalcochinase, a β-glucosidase from Dalbergia cochinchinensis Pierre, in yeast and bacterial hosts. Protein Express Purif 48:195–204. doi:10.1016/j.pep.2006.05.011

    Article  CAS  Google Scholar 

  • Watson J (1991) Textiles and the environment. Special report no. 2150. In: The Economist Intelligence Unit, pp 117–140

  • Wu E, Komolpis K, Wang HY (1999) Chemical extraction of indigo from Indigofera tinctoria while attaining biological integrity. Biotechnol Tech 13:567–569. doi:10.1023/A:1008952016185

    Article  CAS  Google Scholar 

  • Xu Q, Li S, Huang H, Wen J (2012) Key technologies for the industrial production of fumaric acid by fermentation. Biotechnol Adv 30:1685–1696. doi:10.1016/j.biotechadv.2012.08.007

    Article  CAS  Google Scholar 

  • Yu K, Murthy HN, Hahn E, Paek K (2005) Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J 23:53–56. doi:10.1016/j.bej.2004.07.001

    Article  CAS  Google Scholar 

  • Zhang HT, Zhan XB, Zheng ZY, Wu JR, English N, Yu XB, Lin CC (2012) Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Appl Microbiol Biotechnol 93:367–379. doi:10.1007/s00253-011-3448-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful  to CSIR for financial support to SD for this research. Authors are also thankful to the Director CSIR-NEERI for permission to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijaya Ketan Sarangi.

Ethics declarations

Conflict of interest

The authors state no conflict of interest for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Roychoudhary, S. & Sarangi, B.K. Effect of different physico-chemical parameters for natural indigo production during fermentation of Indigofera plant biomass. 3 Biotech 7, 322 (2017). https://doi.org/10.1007/s13205-017-0923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0923-2

Keywords

Navigation