Skip to main content
Log in

Cloning and characterization of auxin efflux carrier genes EcPIN1a and EcPIN1b from finger millet Eleusine coracana L.

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Auxin signaling events in plants play important role in developmental regulation as well as gravitropic responses and plays crucial role in the development of root, lateral root and root hairs. The gene that is known to be most important in the development of root, lateral root and root hairs is commonly known as auxin efflux carrier (PIN). Being commonly known as orphan plant, the genome sequence of Eleusine coracana is not known yet, and hence it was very difficult to conduct advanced research in root development in this plant. As PIN gene plays crucial role in root development, to have some advanced study we proposed to clone the PIN genes from E. coracana. We cloned two PIN genes in E. coracana and named them as EcPIN1a and EcPIN1b. The coding sequence (CDS) of EcPIN1a was 1779 bp and EcPIN1b was 1788 bp long that encodes for 593 and 596 amino acids, respectively. In-silico analysis shows the presence of transmembrane domain in EcPIN1a and EcPIN1b protein. Multiple sequence alignment of EcPIN1a and EcPIN1b protein shows the presence of several conserved motifs. Phylogenetic analysis of EcPIN1a and EcPIN1b grouped with the PIN gene of monocot plant Oryza sativa. This shows that EcPIN genes were monocot specific, and closely match with the PIN genes of O. sativa. The transcript analysis of EcPIN1a gene in leaf tissue shows gradual up-regulation from 7th to 28th days of developmental time period while the transcript level was found to be lower in root tissue. The transcript abundance of EcPIN1b was not detected. Gradual up-regulation of EcPIN1a gene in developmental stages signifies its important role in root development in E. coracana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bainbridge K, Guyomarc’h S, Bayer E et al (2008) Auxin influx carriers stabilize phyllotactic patterning. Genes Dev 22:810–823

    Article  CAS  Google Scholar 

  • Band LR, Wells DM, Fozard JA et al (2014) Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell 26:862–875

    Article  CAS  Google Scholar 

  • Bañoc DM, Yamauchi A, Kamoshita A et al (2000) Genotypic variations in response of lateral root development to fluctuating soil moisture in rice. Plant Prod Sci 3:335–343

    Article  Google Scholar 

  • Barberon M, Geldner N (2014) Radial transport of nutrients: the plant root as a polarized epithelium. Plant Physiol 166:528–537

    Article  Google Scholar 

  • Carraro N, Tisdale-Orr TE, Clouse RM et al (2012) Diversification and expression of the PIN, AUX/LAX, and ABCB families of putative auxin transporters in Populus. Front Plant Sci 3:17

    Article  CAS  Google Scholar 

  • Casimiro I, Beeckman T, Graham N et al (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  CAS  Google Scholar 

  • Chandra D, Chandra S, Sharma AK (2016) Review of Finger millet (Eleusine coracana (L.) Gaertn): a power house of health benefiting nutrients. Food Sci Hum Wellness 5:149–155

    Article  Google Scholar 

  • Chapman N, Miller AJ, Lindsey K, Whalley WR (2012) Roots, water, and nutrient acquisition: let’s get physical. Trends Plant Sci 17:701–710

    Article  CAS  Google Scholar 

  • Chawla R, DeMason DA (2004) Molecular expression of PsPIN1, a putative auxin efflux carrier gene from pea (Pisum sativum L.). Plant Growth Regul 44:1–14

    Article  CAS  Google Scholar 

  • Chen R, Hilson P, Sedbrook J et al (1998) The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci USA 95:15112–15117

    Article  CAS  Google Scholar 

  • Coudert Y, Périn C, Courtois B et al (2010) Genetic control of root development in rice, the model cereal. Trends Plant Sci 15:219–226

    Article  CAS  Google Scholar 

  • Craine JM, Dybzinski R (2013) Mechanisms of plant competition for nutrients, water and light. Funct Ecol 27:833–840

    Article  Google Scholar 

  • de Dorlodot S, Forster B, Pagès L et al (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  Google Scholar 

  • Drdová EJ, Synek L, Pečenková T et al (2013) The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J 73:709–719

    Article  Google Scholar 

  • Forestan C, Varotto S (2012) The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development. Mol Plant 5:787–798

    Article  CAS  Google Scholar 

  • Friml J, Palme K (2002) Polar auxin transport-old questions and new concepts? Plant Mol Biol 49:273–284

    Article  CAS  Google Scholar 

  • Friml J, Benková E, Blilou I et al (2002a) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  CAS  Google Scholar 

  • Friml J, Wiśniewska J, Benková E et al (2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  Google Scholar 

  • Friml J, Vieten A, Sauer M et al (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  Google Scholar 

  • Furutani M, Vernoux T, Traas J et al (2004) PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131:5021–5030

    Article  CAS  Google Scholar 

  • Gull A, Ahmad NG (2016) Technological, processing and nutritional approach of finger millet (Eleusine coracana)—a mini review. J Food Process Technol 7:8–11

    Article  Google Scholar 

  • Gururani M, Mohanta T, Bae H (2015) Current understanding of the interplay between phytohormones and photosynthesis under environmental stress. Int J Mol Sci 16:19055–19085

    Article  CAS  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617

    Article  CAS  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    Article  CAS  Google Scholar 

  • Kong D, Ma C (2014) Acquisition of ephemeral module in roots: a new view and test. Sci Rep 4:4–7

    Google Scholar 

  • Lee SH, Cho H (2006) PINOID positively regulates auxin efflux in arabidopsis root hair cells and tobacco cells. Plant Cell 18:1604–1616

    Article  CAS  Google Scholar 

  • Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485–3495

    Article  CAS  Google Scholar 

  • Li YH, Zou MH, Feng BH et al (2012) Molecular cloning and characterization of the genes encoding an auxin efflux carrier and the auxin influx carriers associated with the adventitious root formation in mango (Mangifera indica L.) cotyledon segments. Plant Physiol Biochem 55:33–42

    Article  CAS  Google Scholar 

  • Liu S, Wang J, Wang L et al (2009) Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Cell Res 19:1110–1119

    Article  CAS  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  CAS  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  Google Scholar 

  • Lorbiecke R (1999) Adventitious root growth and cell-cycle induction in deepwater rice. Plant Physiol 119:21–30

    Article  CAS  Google Scholar 

  • Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187

    Article  CAS  Google Scholar 

  • Mahadevamma S, Tharanathan RN (2004) Processing of legumes: resistant starch and dietary fiber contents. J Food Qual 27:289–303

    Article  Google Scholar 

  • Majumder ND, Rakshit SC, Borthakur DN (1990) Genetic effect on uptake of selected nutrients in some rice (O. sativa L.) varieties in phosphorus deficient soils. Plant Soil 123:117–120

    Article  CAS  Google Scholar 

  • Mangala SL, Malleshi NG, Tharanathan RN (1999) Resistant starch from differently processed rice and ragi (finger millet). Eur Food Res Technol 209:32–37

    Article  CAS  Google Scholar 

  • Mohanta TK, Mohanta N (2013) Genome wide identification of auxin efflux carrier gene family in Physcomitrella patens. J Biotechnol Sci 1:54–64

    Google Scholar 

  • Mohanta T, Mickael M, Nibedita M, Chidananda NK (2014) In-silico identification and phylogenetic analysis of auxin efflux carrier gene family in Setaria italica L. Afr J Biotechnol 13:211–225

    Article  CAS  Google Scholar 

  • Mohanta T, Mohanta N, Bae H (2015) Identification and expression analysis of PIN-like (PILS) gene family of rice treated with auxin and cytokinin. Genes 6:622–640

    Article  CAS  Google Scholar 

  • Péret B, De Rybel B, Casimiro I et al (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    Article  Google Scholar 

  • Péret B, Middleton AM, French AP et al (2013) Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Mol Syst Biol 9:699

    Article  Google Scholar 

  • Petrásek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  CAS  Google Scholar 

  • Ramulu P, Udayasekhara Rao P (1997) Effect of processing on dietary fiber content of cereals and pulses. Plant Foods Hum Nutr 50:249–257

    Article  CAS  Google Scholar 

  • Rebouillat J, Dievart A, Verdeil JL et al (2009) Molecular genetics of rice root development. Rice 2:15–34

    Article  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  CAS  Google Scholar 

  • Reinhardt D, Pesce E-R, Stieger P et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  CAS  Google Scholar 

  • Rolland-Lagan A-G, Prusinkiewicz P (2005) Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J 44:854–865

    Article  CAS  Google Scholar 

  • Scarpella E, Barkoulas M, Tsiantis M (2010) Control of leaf and vein development by auxin. Cold Spring Harb Perspect Biol 2:a001511

    Article  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  • Shobana S, Krishnaswamy K, Sudha V et al (2013) Finger millet (Ragi, Eleusine coracana L.). A review of its nutritional properties, processing, and plausible health benefits. Adv Food Nutr Res 69:1–39

    Article  CAS  Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M et al (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732

    Article  CAS  Google Scholar 

  • Singh P, Mohanta TK, Sinha AK (2015) Unraveling the intricate nexus of molecular mechanisms governing rice root development: OsMPK3/6 and Auxin-Cytokinin Interplay. PLoS ONE 10:e0123620

    Article  Google Scholar 

  • Sundberg E, Østergaard L (2009) Distinct and dynamic auxin activities during reproductive development. Cold Spring Harb Perspect Biol 1:1–15

    Article  Google Scholar 

  • Swarup K, Benkova E, Swarup R et al (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Vandenbussche F, Petrásek J, Zádníková P et al (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597–606

    Article  CAS  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  Google Scholar 

  • Vernoux T, Kronenberger J, Grandjean O et al (2000) PIN-FORMED 1 regulates cell fate at the perifery of the shoot apical meristem. Development 127:5157–5165

    CAS  Google Scholar 

  • Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49:387–398

    Article  CAS  Google Scholar 

  • Wissuwa M, Ae N (2001) Further characterization of two QTLs that increase phosphorus uptake of rice (Oryza sativa L.) under phosphorus deficiency. Plant Soil 237:275–286

    Article  CAS  Google Scholar 

  • Zazímalová E, Murphy AS, Yang H et al (2010) Auxin transporters—why so many? Cold Spring Harb Perspect Biol 2:a001552

    Article  Google Scholar 

Download references

Acknowledgement

This work was carried out with the support of the Next-Generation Biogreen 21 Program (PJ011113), Rural Development Administration, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tapan Kumar Mohanta or Hanhong Bae.

Ethics declarations

Conflict of interest

Author declares that there is no competing interest towards the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanta, T.K., Bae, H. Cloning and characterization of auxin efflux carrier genes EcPIN1a and EcPIN1b from finger millet Eleusine coracana L.. 3 Biotech 7, 51 (2017). https://doi.org/10.1007/s13205-017-0689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0689-6

Keywords

Navigation