Skip to main content
Log in

Gene structure and expression characteristics of the auxin receptor TIR1 ortholog in Momordica charantia and developmental analysis of its promoter in transgenic plants

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

It is known that phytohormone auxin affects floral sexual determination in monoecious Cucurbitaceae such as cucumber and melon. TRANSPORT INHIBITOR RESPONSE 1 (TIR1) was first identified in Arabidopsis thaliana as the auxin receptor but few reports have correlated it with fruit initiation and development. As the first step to understanding the regulatory mechanism of auxin in flower sex expression, fruit set, and fruit development in bitter gourd, a TIR1 ortholog named McTIR1, was isolated and characterized in monoecious bitter gourd (Momordica charantia L.). The translation start codon locates in the second exon of McTIR1. Based on phylogenetic analysis, the similarity of deduced amino acid sequence was closer between the McTIR1 and AtTIR1 than between McTIR1 and AUXIN SIGNALING F-BOX (AFB) family. Northern analysis indicated McTIR1 expressed in the early fruit developmental stages of bitter gourd. The McTIR1 mRNA was most abundant in young leaves and stems and lowest in roots of bitter gourd. Expression of McTIR1 was further characterized using transcriptional fusion construct containing β-glucuronidase reporter gene fused to the gene promoter and 5′-untranslated region of McTIR1. The expression of McTIR1 promoter decreased dramatically during the late stages of pistil development in transgenic tobacco. These results indicate that expression of auxin receptor McTIR1 is associated with the pistil development of unisexual flowers in bitter gourd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GUS:

β-glucuronidase

TIR1:

TRANSPORT INHIBITOR RESPONSE 1

AFB:

AUXIN SIGNALING F-BOX

References

  • Akter P, Rahman MA (2010) Effect of foliar application of IAA and GA3 on sex expression, yield attributes and yield of bitter gourd (Momordica charantia L.). Chittagong Univ J B Sci 5:55–62

    Google Scholar 

  • Aloni R, Langhans M, Aloni E, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman J (1994) Arabidopsis: an atlas of morphology and development. Springer-Verlag, New York

    Book  Google Scholar 

  • Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarellic M (2008) Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 20:1760–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YM, Cheng YH, Hsu WS, Huang PL (2000) Observation of fruit anatomy and development of bitter gourd. II. Development of embryo, seed and fruit of bitter gourd. J Agric Res China 49:19–60

    Google Scholar 

  • Choudhury B, Phatak SC (1959) Sex expression and fruit development in cucumber (Cucumis sativus L.) as affected by gibberellin. Indian J Hortic 16:233–235

    Google Scholar 

  • Clough J, Bent AF (1998) Floral dip: a simplified method for Agrobacterium- mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Devoghalaere F, Doucen T, Guitton B, Keeling J, Payne W, Ling TJ, Ross JJ, Hallett IC, Gunaseelan K, Dayatilake GA, Diak R, Breen KC, Tustin DS, Costes E, Chagné D, Schaffer RJ, David KM (2012) A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biol 12:7. doi:10.1186/1471-2229-12-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Jones AM, Estelle M (2003) Auxin action in a cell-free system. Curr Biol 13:1418–1422

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jürgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    Article  CAS  PubMed  Google Scholar 

  • Effendi Y, Jones AM, Scherer GFE (2013) AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses. J Exp Bot 64:5065–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sharkawy I, Sherif SM, Jones B, Mila I, Kumar PP, Nouzayen M, Jayasankar S (2014) TIR-1 like auxin-receptors are involved in the regulation of plum fruit development. J Exp Bot 65:5205–5215

    Article  PubMed  PubMed Central  Google Scholar 

  • Elassar G, Rudich J, Kedar N (1974) Parthenocarpic fruit development muskmelon induced by growth regulators. Hortscience 9:577

    Google Scholar 

  • Feng XL, Ni WM, Elge S, Mueller-Roeber B, Xu ZH, Xue HW (2006) Auxin flow in anther filaments is critical for pollen grain development through regulating pollen mitosis. Plant Mol Biol 61:215–226

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H (1997) Tracheary element differentiation. Plant Cell 9:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM (2006) AUXIN RESPONSE FACTOR8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell 18:1873–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorguet B, Van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7:131–139

    Article  CAS  PubMed  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    Article  CAS  PubMed  Google Scholar 

  • Gray WM, Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadfi K, Speth V, Neuhaus G (1998) Auxin-induced developmental patterns in Brassica juncea embryos. Developments 125:879–887

    CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) PGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elments (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, Roger SG, Fraley RT (1986) Analysis of Agrobacterium tummefaciens virulence mutants in leaf discs. Proc Natl Acad Sci U S A 83:2571–2575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WF, Huang PL, Do YY (2007) Ethylene receptor transcript accumulation patterns during flower senescence in Oncidium Gower Ramsey as affected by exogenous ethylene and pollinia cap dislodgment. Postharvest Biol Tech 44:87–94

    Article  CAS  Google Scholar 

  • Jefferson R, Kavanagh T, Bevan M (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim IS, Okubo H, Fujieda K (1992) Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.). Sci Horti 52:1–8

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lee NY, Do YY (2008) Cloning and analysis of auxin receptor gene from Momordica charantia. J Taiwan Soc Hort Sci 54:75–86

    Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: A new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Pandolfini T, Molesini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12:327–329

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Calderon-Villalobos LI, Prigg M, Peret B, Dharmasiri S, Itoh H, Lechner E, Gray WM, Bennett M, Estelle M (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci U S A 106:22540–22545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Percy AE, Jameson PE, Melton LD (1998) Expansion during early apple fruit development induced by auxin and N-(2-chloro-4-pyridyl)-N’-phenylurea: effect on cell wall hemicellulose. Plant Growth Regul 26:1–6

    Article  CAS  Google Scholar 

  • Quebedeaux B, Beyer EM (1972) Chemically induced parthenocarpy in the cucumber by a new inhibitor of auxin transport. Hortscience 7:474–476

    CAS  Google Scholar 

  • Ren Z, Li Z, Miao Q, Yang Y, Deng W, Hao Y (2011) The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J Exp Bot 62:2815–2826

    Article  CAS  PubMed  Google Scholar 

  • Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Čovanová M, Hayashi K, Dhonukshe P, Yang Z, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zažímalová E, Friml J (2010) ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 12:198–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soto A, Ruiz KB, Ravaglia D, Costa G, Torrigiani P (2013) ABA may promote or delay peach fruit ripening through modulation of ripening- and hormone-related gene expression depending on the developmental stage. Plant Physiol Biochem 64:11–24

    Article  CAS  PubMed  Google Scholar 

  • Stern RA, Flaishman M, Applebaum S, Ben-Arie R (2007) Effect of synthetic auxins on fruit development of ‘Bing’ cherry (Prunus avium L.). Sci Hortic (Amsterdam) 114:275–280

    Article  CAS  Google Scholar 

  • Tromas A, Paque S, Stierlé V, Quettier AL, Muller P, Lechner E, Genschik P, Perrot-Rechenmann C (2013) Auxin-binding protein 1 is a negative regulator of the SCFTIR1/AFB pathway. Nat Commun 4:2496

    Article  PubMed  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005a) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang NN, Shih M-C, Li N (2005b) The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J Exp Bot 56:909–920

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson JE, Twell D, Lindsey K (1997) Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants. J Exp Bot 48:265–275

    Article  CAS  Google Scholar 

  • Xu T, Dai N, Chen J, Nagawa S, Cao M, Li H, Zhou Z, Chen X, de Rycke R, Rakusová H, Wang W, Jones AM, Friml J, Patterson SE, Bleecker AB, Yang Z (2014) Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343:1025–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for proofreading of this manuscript by Drs. Mark D. Barnes (Chinese Culture University), Fromnz Simon, and Raghu Rajasekaran. This work was supported by grants NSC96-2313-B-002-032-MY3 and NSC99-2313-B-002-008-MY3 from the National Science Council, Republic of China.

Compliance with ethical standards

Conflict of interest

Cheng-Ku Lin, Nien-Ying Lee, Pung-Ling Huang, and Yi-Yin Do declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Yin Do.

Electronic supplementary material

Supplementary Fig. S1

Gene expression of McTIR1 in bitter gourd fruit sections treated with different kinds of auxin, different concentrations of IAA, and 500 μM IAA for different durations.

High Resolution image (TIFF 9359 kb)

Supplementary Fig. 2

Promoter activity of Nicotiana tabacum McTIR1pro::GUS transgenic seedlings treated with different abiotic stresses analyzed by GUS staining.

High Resolution image (TIFF 6501 kb)

Supplementary Fig. 3

Histochemical localization of GUS activity at different vegetative stages in transgenic Nicotiana tabacum.

High Resolution image (TIFF 3192 kb)

Supplementary Fig. 4

Histochemical localization of GUS activity in McTIR1pro::GUS transgenic Arabidopsis at different developmental stages of flowers.

High Resolution image (TIFF 5070 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CK., Lee, NY., Huang, PL. et al. Gene structure and expression characteristics of the auxin receptor TIR1 ortholog in Momordica charantia and developmental analysis of its promoter in transgenic plants. J. Plant Biochem. Biotechnol. 25, 253–262 (2016). https://doi.org/10.1007/s13562-015-0336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-015-0336-4

Keywords

Navigation