Skip to main content
Log in

Photocatalytic degradation of malachite green over differently synthesized nano-α-Fe2O3: a comprehensive pathway

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Nano-sized amorphous Iron (III) oxides have been a fascinating material for the scientific community owing to their widespread promising application in photocatalysis of water decontamination, due to high specific surface area and variable valency. Malachite green dye is a non-biodegradable organic pollutant known for its toxic effects on humans and aquatic organisms. In the present work, Fe2O3 was synthesized through Citrate–Nitrate Sol–Gel route and Syzygium cumini leaf extract mediated green method. The composition and physical nature of the synthesized iron oxides were confirmed using p-XRD, SEM-EDAX, XPS techniques. A comparative investigation of visible light degradation of malachite green dye was done using differently synthesized Fe2O3 at pH 8. The LCMS study exposed that the sol–gel Fe2O3 was highly efficient in transforming Malachite green (MG) into a no. of intermediates of low molecular weights, whereas green Fe2O3 revealed formation of both high and low molecular weight metabolites. In the light of the evidence derived from LCMS, a pathway has been proposed to highlight the absolute and sequential transformation of the dye to environmentally benign compounds. The study also disclosed the key role played by Iron oxide nanoparticles (IONPs), in the total mineralization of the dye to carbonates and nitrates that can be assimilated by plants and the decontaminated water can be engaged in agricultural practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

All experimental data proof are available. Will be provided for any queries in future.

References

  • Ahmed E, Holmstrom SJM (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7(3):196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ajaz M, Rehman A, Khan Z, Atif Nisar M, Hussain S (2019) Degradation of azo dyes by Alcaligenes aquatilis 3c and its potential use in the wastewater treatment. AMB Expr 9:64

    Article  Google Scholar 

  • Alderman DJ (1985) Malachite green: a review. J Fish Dis 8(3):289–298

    Article  CAS  Google Scholar 

  • Alexander M (1977) Introduction to soil microbiology, 2nd edn. John Wiley & Sons, New York, p 467

    Google Scholar 

  • Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS (2016) Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract—a comprehensive study. Mat Sci Eng C-Mater 58:359–365

    Article  CAS  Google Scholar 

  • Aoyama M, Nagumo T (1997) Comparison of the effects of Cu, Pb and As on the plant residue decomposition, microbial biomass and soil respiration. Soil Sci Plant Nutr 43(3):613–622

    Article  CAS  Google Scholar 

  • Archana KM, Rajalakshmi S, Kumar PS, Krishnaswamy VG, Rajagopal R, Kumar DT, Priya Doss CG (2021) Effect of shape and anthocyanin capping on antibacterial activity of CuI particles. Env. Res. 200:111759

    Article  CAS  Google Scholar 

  • Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 9:49–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayyub P, Multani M, Barma M, Palkar VR, Vijayaraghavan R (1988) Size-induced structural phase transitions and hyperfine properties of micro crystalline Fe2O3. J. Phys. C: Solid StatePhys. 21:2229–2245

    Article  CAS  Google Scholar 

  • Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the fenton process for wastewater treatment. J Environ Chem Eng 2(1):557–572

    Article  CAS  Google Scholar 

  • Bahnemann DW, Pelizzetti E, Schiavello M (eds) (1991) Photochemical conversion and storage of solar energy. Kluwer Academic Publishers, Dordrecht, pp 251–276

    Book  Google Scholar 

  • Bajpai M, Pande A, Tewari SK, Prakash D (2005) Phenolic contents and antioxidant activity of some food and medicinal plants. Int J Food Sci Nutr 56(4):287–291

    Article  CAS  PubMed  Google Scholar 

  • Basavaraja S, Balaji DS, Bedre MD, Raghunandan D, Prithviraj Swamy PM, Venkataraman A (2011) Solvothermal synthesis and characterization of acicular α-Fe2O3 nanoparticles. Bull. Mater. Sci. 34(7):1313–1317

    Article  CAS  Google Scholar 

  • Belin T, Millot N, Bovet N, Gailhanou M (2007) In situ and time resolved study of the γ/α-Fe2O3 transition in nanometric particles. J Solid State Chem 180:2377–2385

    Article  CAS  Google Scholar 

  • Bhar SK, Mukherjee N, Maji SK, Adhikary B, Mondal A (2010) Synthesis of nanocrystalline iron oxide ultra thin films by thermal decomposition of iron nitroprusside: structural and optical properties. Mater Res Bull. 45:1948–1953

    Article  CAS  Google Scholar 

  • Bhattacharya SS, Debkanta GN, Mandal C, Majumdar K (2004) Effect of balanced fertilization on pulse crop production in red and lateritic soils. Better Crops 88(4):52–57

    Google Scholar 

  • Blomquist J, Helgeson U, Moberg LC (1983) ESCA and Mossbauer spectra of some Iron (III) beta diketonates and tetraphenylporphyrin Iron (III) chloride. Inorg Chim Acta 69:17–23

    Article  CAS  Google Scholar 

  • Cartaxo-Furtado NA, de Castilho AR, Freires IA, Santana CP, Sampaio TO, Xavier MA, Pereira JV (2016) Physicochemical characterization of a new raw material obtained from the leaves of Syzygium cumini (L.) skeel (Myrtaceae). J Thermal Anal Calorim. 127(2):1137–1141

    Article  Google Scholar 

  • Chandrasekaran S, Hur SH, Kim EJ, Rajagopalan B, Babu KF, Senthilkumar V, Chung JS, Choi WM, Kim YS (2015) Highly ordered maghemite/reduced graphene oxide nanocomposites for high-performance photoelectrochemical water splitting. RSC Adv. 5:29159

    Article  CAS  Google Scholar 

  • Chaudhari NS, Warule SS, Muduli S, Kale BB, Jouen S, Lefez B, Hannoyer B, Ogale SB (2011) Maghemite (hematite) core (shell) nanorods via thermolysis of a molecular solid of Fe-complex. Dalton Trans 40:8003

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Ma W, He J, Zhao J (2002) Fenton degradation of Malachite green catalyzed by aromatic additives. J Phys Chem A 106:9485–9490

    Article  CAS  Google Scholar 

  • Chen C, Lu C, Chung Y, Jan J (2007) UV light induced photodegradation of Malachite green on TiO2 nanoparticles. J Hazard Mater 141(3):520–528

    Article  CAS  PubMed  Google Scholar 

  • Cheng C, Lei M, Feng L, Wong TL, Ho KM, Fung KK, Loy MMT, Yu DP, Wang N (2009) High-quality ZnO nano wire arrays fabricated from photoresists. ACS Nano 3:53–58

    Article  CAS  PubMed  Google Scholar 

  • Combellas C, Delamar M, Kanoufi F, Pinson J, Podvorica FI (2005) Spontaneous grafting of Iron surfaces by reduction of aryldiazonium salts in acidic or neutral aqueous solution. Application to the protection of Iron against corrosion. Chem. Mater. 17:3968–3975

    Article  CAS  Google Scholar 

  • Culp SJ, Mellick PW, Trotter RW, Greenlees KJ, Kodell RL, Beland FA (2006) Carcinogenicity of malachite green chloride and leuco malachite green in B6C3F1 mice and F344 rats. Food Chem Toxicol 44(8):1204–1212

    Article  CAS  PubMed  Google Scholar 

  • Farahmandjou M, Soflaee F (2014) Low temperature synthesis of α-Fe2O3 Nano-rods using a simple chemical route. JNS 4:413–418

    Google Scholar 

  • Farahmandjou M, Soflaee F (2015) Synthesis and characterization of α-Fe2O3 Nanoparticles by simple co-precipitation method. Phys Chem Res 3(3):191–196

    CAS  Google Scholar 

  • Farmer Gadsden VC (1976) The infrared spectra of minerals and related inorganic compounds. London (Butterworths), 1975. 277pp. Mineral Mag 40(313):540

    Article  Google Scholar 

  • Gardner SD, Singamsetty CSK, Booth GL, He G-R (1995) Surface characterization of carbon fibers using angle-resolved XPS and ISS. Carbon 33(5):587–595

    Article  CAS  Google Scholar 

  • Guo MY, Ching Ng AM, Liu F, Djurisic AB, Chan WK (2011) Photocatalytic activity of metal oxides—the role of holes and *OH radicals. Appl Catal B Environ. 107:150–157

    Article  CAS  Google Scholar 

  • Haber J, Stoch J, Ungier L (1976) X-ray photoelectron spectra of oxygen in oxides of Co, Ni, Fe and Zn. J Electron Spectrosc Relat Phenom 9:459–467

    Article  CAS  Google Scholar 

  • Hameed BH, Lee TW (2009) Degradation of Malachite green in aqueous solution by Fenton process. J Hazard Mater 164(2–3):468–472

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Islam W, Islam MB (2016) Phytochemical screening of Syzygium cumini (L.) extracts in different solvents. J. Bio-Sci. 24:11–18

    Article  Google Scholar 

  • Hurley BL, McCreery RL (2004) Covalent bonding of organic molecules to Cu and Al alloy 2024 T3 surfaces via diazonium ion reduction. J Electrochem Soc 151(5):B252–B259

    Article  CAS  Google Scholar 

  • Ighalo JO, Sagboye PA, Umenweke G, Ajala OJ, Omoarukhe FO, Adeyanju CA et al (2021) CuO nanoparticles (CuO NPs) for water treatment: a review of recent advances. Environ Nanotechno Monit Manage 15:100443

    CAS  Google Scholar 

  • Jiaguo Yu, Xiaoxiao Yu, Huang B, Zhang X, Dai Y (2009) Hydrothermal synthesis and visible-light photo catalytic activity of novel cage-like ferric oxide hollow spheres. Cryst Growth Des 9(3):1474–1480

    Article  Google Scholar 

  • Jing-San Xu, Zhu Y-J (2011) α-Fe2O3 hierarchically hollow microspheres self-assembled with nanosheets: Surfactant-free solvothermal synthesis, magnetic and photo catalytic properties. Cryst Eng Comm 13:5162

    Article  Google Scholar 

  • Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  CAS  Google Scholar 

  • Kataby G, Cojocaru M, Prozorov R, Gedanken A (1999) Coating carboxylic acids on amorphous Iron nanoparticles. Langmuir 15:1703–1708

    Article  CAS  Google Scholar 

  • Kayani ZN, Arshad S, Riaz S, Naseem S (2014) Synthesis of iron oxide nanoparticles by sol-gel technique and their characterization. IEEE Trans Magn. 50(8):1–4

    Article  Google Scholar 

  • Kebede GG, Mitev PD, Briels WJ, Hermansson K (2018) Red-shifting and blue-shifting OH groups on metal oxide surfaces—towards a unified picture. Phys Chem Chem Phys 20:12678–12687

    Article  CAS  PubMed  Google Scholar 

  • Kharisov BI, Rasika Dias HV, Kharissova OV, Jimenez-Perez VM, Perez BO, Flores BM (2012) Iron-containing nanomaterials: synthesis, properties and environmental applications. RSC Adv. 2:9325–9358

    Article  CAS  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96:1518–1521

    Article  CAS  PubMed  Google Scholar 

  • Kuang Y, Wang Q, Chen Z, Megharaj M, Naidu R (2013) Heterogeneous fenton-like oxidation of monochlorobenzene using the green synthesis of iron nanoparticles. J Colloid Interface Sci 410:67–73

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Yadav SC, Yadav SK (2010) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol 85(10):1301–1309

    CAS  Google Scholar 

  • Li H, Xu T, Wang C, Chen J, Zhou H, Liu H (2005) Tribochemical effects on the friction and wear behaviors of diamond-like carbon film under high relative humidity conditions. Tribol Lett. 19(3):231

    Article  Google Scholar 

  • Li CL, Tan HB, Lin JJ, Luo XL, Wang SP, You J et al (2018) Emerging Pt-based electrocatalysts with highly open nanoarchitechtures for boosting oxygen reduction reaction. Nano Today 21:91–105

    Article  CAS  Google Scholar 

  • Liu G, Deng Q, Wang H, DickonNg HL, Kong M, Cai W, Wang G (2012) Micro/nanostructured α-Fe2O3 spheres: synthesis, characterization and structurally enhanced visible-light photo catalytic activity. J. Mater. Chem. 22:9704

    Article  CAS  Google Scholar 

  • Luo Y, Luo J, Jiang J, Zhou W, Yang H, Qi X, Zhang H, Fan HJ, Yu DYW, Li CM, Ting Y (2012) Seed-assisted synthesis of highly ordered TiO2@ α-Fe2O3core/shell arrays on carbon textiles for lithium ion battery applications. Energy Environ. Sci. 5:6559

    Article  CAS  Google Scholar 

  • Maity D, Agrawal DC (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308:46–55

    Article  CAS  Google Scholar 

  • Meng F, Li J, Cushing SK, Bright J, Zhi M, Rowley JD, Hong ZL, Manivannan A, Bristow AD, Nianqiang W (2013) Photocatalytic water oxidation by hematite/reduced graphene oxide composites. ACS Catal. 3:746–751

    Article  CAS  Google Scholar 

  • Mills P, Sullivan JL (1983) A study of the core level electrons in iron and its three oxides by means of x-ray photoelectron spectroscopy. J Phys d: Appl Phys 16:723–732

    Article  CAS  Google Scholar 

  • Miroshnikov SA et al (2017) Research of opportunities for using iron nanoparticles and amino acids in poultry nutrition. Int J GEOMAT 13(13):124–131

    Google Scholar 

  • Mirzaei A, Janghorban K, Hashhhhemi B, Hosseini SR, Bonyani M, Leonardi SG, Bonavita A, Neri G (2016) Synthesis and characterization of Mesoporous α-Fe2O3 nanoparticles and investigation of electrical properties of fabricated thick films. Process Appl Ceram. 10(4):209–217

    Article  CAS  Google Scholar 

  • Mohammadi SZ, Khorasani-Motlagh M, Jahani Sh, Yousefi M (2012) Synthesis and characterization of α-Fe2O3 nanoparticles by microwave method. Int. J. Nanosci. Nanotechnol. 8(2):87–92

    Google Scholar 

  • Mohan P, Mala R (2019) Comparative antibacterial activity of magnetic iron oxide nanoparticles synthesized by biological and chemical methods against poultry feed pathogens. Mater Res Express 6:115077

    Article  Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain J (1992) Handbook of X-ray photoelectron spectroscopy. A reference book of standard spectra for identification and interpretation of XPS data; physical electronics. Perkin-Elmer Corporation, Eden Prairie, Minnesota, USA

    Google Scholar 

  • Mukherjee P et al (2001) Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelia matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 1:515–9

    Article  CAS  Google Scholar 

  • Music S, Gotic M, Popovic S (1993) X-ray diffraction and Fourier transform-infrared analysis of the rust formed by corrosion of steel in aqueous solutions. J Mater Sci 28:5744–5752

    Article  CAS  Google Scholar 

  • Neatu S, Macia-Agullo JA, Garcia H (2014) Solar light photocatalytic CO2 reduction: general considerations and selected bench-mark photocatalysts. Int. J. Mol. Sci. 15:5246–5262

    Article  PubMed  PubMed Central  Google Scholar 

  • Paparazzo E (1987) XPS and Auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3. J Electron Spectrosc Relat Phenom 43:97–112

    Article  CAS  Google Scholar 

  • Parsons JG, Peralta-Videa JR, Gardea-Torresdey L (2007) Use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Dev Environ Sci 5:463–485

    CAS  Google Scholar 

  • Patil D, Patil V, Patil P (2011) Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods. Sens Actuators B 152:299–306

    Article  CAS  Google Scholar 

  • Pawar MJ, Khajone AD, Gaoner MD, Chandel PS (2012) Photodegradation of Malachite green dye over sol-gel synthesized nanocrystalline α-Fe2O3. J Chem Pharm Res 4(4):1880–1884

    CAS  Google Scholar 

  • Perez-Estrada LA, Aguera A, Hernando MD, Malato S, Fernandez-Alba AR (2008) Photo degradation of Malachite green under natural sunlight irradiation: kinetic and toxicity of the transformation products. Chemosphere 70:2068–2075

    Article  CAS  PubMed  Google Scholar 

  • Pirillo S, Cornaglia L, Ferreira ML, Reuda EH (2008) Removal of fluorescein using different iron oxides as adsorbents: effect of pH. Spectrochimica Acta Part A. 71:636–643

    Article  Google Scholar 

  • Pirillo S, Ferreira ML, Reuda EH (2009) The effect of pH in the adsorption of Alizarin and Eriochrome blue black R onto Iron oxides. J Hazard Mater 168:168–178

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran K, Shanmugavel G (2017) Antidiabetic activity and phytochemical constituents of Syzygium cumini seeds in Puducherry Region, South India. Int J Pharmacogn Phytochem Res 9(7):985–989

    Google Scholar 

  • Qunting Qu, Yang S, Feng X (2011) 2D-Sandwich-like sheets of Iron oxide grown on graphene as high energy anode material for supercapacitors. Adv Mater 23:5574–5580

    Article  Google Scholar 

  • Recnik A, Nyiro-Kosa I, Dodony I, Posfai M (2013) Growth defects and epitaxy in Fe3O4 and γ-Fe2O3 nanocrystals. CrystEngComm 15(37):7539

    Article  CAS  Google Scholar 

  • Rose AL, Priya FJ, Vidhya S (2017) Comparative study on the synergistic action of differentially synthesized copper nanoparticles with Escherichia coli and Staphylococcus aureus. Int Res J Pharm 8:85–90

    Article  CAS  Google Scholar 

  • Saha B, Das S, Saikia J, Das G (2011) Preferential and enhanced adsorption of different dyes on iron oxide nanoparticles: a comparative study. J Phys Chem C 115:8024–8033

    Article  CAS  Google Scholar 

  • Saif S, Tahir A, Chen Y (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials. 6(11):209

    Article  PubMed  PubMed Central  Google Scholar 

  • Scherpenisse P, Bergwerff AA (2005) Determination of residues of malachite green in finfish by liquid chromatography tandem mass spectrometry. Anal Chim Acta 529:173–177

    Article  CAS  Google Scholar 

  • Shahwan T, Abu Sirriah S, Nairat M, Boyaci E, Eroglu AE, Scott TB, Hallam KR (2011) Green synthesis of Iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J 172(1):258–266

    Article  CAS  Google Scholar 

  • Song L, Zhang S (2009) Formation of α-Fe2O3/ FeOOH nano structures with various morphologies by a hydrothermal route and their photo catalytic properties. Colloids Surfaces A: Physicochem Eng. Aspects 348:217–220

    Article  CAS  Google Scholar 

  • Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66(3):319–329

    Article  CAS  PubMed  Google Scholar 

  • Taghavi Fardood S, Moradnia F, Mostafaei M, Afshari Z, Faramarzi V, Ganjkhanlu S (2019) Biosynthesis of MgFe2O4 magnetic nanoparticles and their application in photodegradation of malachite green dye and kinetic study. Nanochem Res. 4(1):86–93

    Google Scholar 

  • Takeda M, Onishi T, Nakakubo S, Fujimoto S (2009) Physical properties of Iron-oxide scales on Si-containing steels at high temperature. Materials Trans. 50(9):2242–2246

    Article  CAS  Google Scholar 

  • Valaskova M, Tokarsky J, Pavlovsky J, Prostejovsky T, Koci K (2019) α-Fe2O3 nanoparticles/vermiculite clay material: structural optical and photocatalytic properties. Materials. 12(11):1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vayssieres L, Sathe C, Butorin SM, Shuh DK, Nordgren J, Guo J (2005) One dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 17:2320–2323

    Article  CAS  Google Scholar 

  • Venkateswarlu SN, Kumar B, Prasad CH, Venkateswarlu P, Jyothi NVV (2014) Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract. Physica B 449:67–71

    Article  CAS  Google Scholar 

  • Wang X, Ni J, Pang S, Li Y (2017) Removal of Malachite green from aqueous solutions by electrocoagulation/peanut shell adsorption coupling in a batch system. Water Sci Technol 75(8):1830–1838

    Article  CAS  PubMed  Google Scholar 

  • Weng X, Huang L, Chen Z, Megharaj M, Naidu R (2013) Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind Crops Prod 51:342–347

    Article  CAS  Google Scholar 

  • Wexler P (2014) Encyclopedia of toxicology, 4 vols., 3rd edition. Academic Press/Elsevier, London. p 5220. ISBN: 978–0123864543.

  • Xie Y, Wu K, Chen F, He J, Zhao J (2001) Investigation of the intermediates formed during the degradation of Malachite green in the presence of Fe3+ and H2O2 under visible irradiation. Res Chem Intermed 27(3):237–248

    Article  CAS  Google Scholar 

  • Yadav VK, Ali D, Khan SH, Gnanamoorthy G, Choudhary N, Yadav KK, van Thai N, Hussain SA, Manhrdas S (2020) Synthesis and characterization of amorphous iron oxide nanoparticles by the sonochemical method and their application for the remediation of heavy metals from wastewater. Nanomaterials. 10:1551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Woll C (2017) IR spectroscopy applied to metal oxide surfaces: adsorbate vibrations and beyond. Adv Phys X. 2(2):373–408

    CAS  Google Scholar 

  • Yilmaz S, Demirrezen DA, Yilmaz DD, Yildiz YS (2022) Green synthesis of Iron oxide nanoparticles using Ceratonia Siliqua L. aqueous extract: improvement of colloidal stability by optimizing synthesis parameters and evaluation of antibacterial activity against Gram-positive and Gram-negative bacteria. Int. J. Mater. Res. 113(10):849–861

    Article  Google Scholar 

  • Yongming Ju, Yang S, Ding Y, Sun C, Zhang A, Wang L (2008) Microwave-assisted rapid photo catalytic degradation of Malachite green in TiO2 suspensions: mechanism and pathways. J Phys Chem A 112:11172–11177

    Article  Google Scholar 

  • Yusefi M, Shameli K, Ali RR, Pang SW, Teow SY (2020) Evaluating anti cancer activity of plant mediated synthesized iron oxide nanoparticles using Punica Granatum fruit peel extract. J Mol Struct 1204:127539

    Article  CAS  Google Scholar 

  • Zhou J, Song H, Ma L, Chen X (2011) Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium ion batteries. RSC Adv 1:782–791

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We immensely acknowledge the Nanotechnology Research Centre (NRC), SRMIST for providing the research facilities. We sincerely thank CRIST lab, Stella Maris College, Chennai; p-XRD lab, Department of Chemistry, IIT-Madras; SAIF, IIT-Madras and SAIF, IIT-Bombay for providing instrumentation facilities to aid sample characterizations.

Author information

Authors and Affiliations

Authors

Contributions

Revathy Rajagopal: conceptualization, supervision, visualization, methodology, project administration, writing—review and editing. Kavitha R: investigation, validation, visualization, resources, data curation, formal analysis, writing original draft, writing—review and editing. Jayashree N: investigation, validation, resources, data curation. Archana KM.: data curation, formal analysis, visualization.

Corresponding author

Correspondence to Revathy Rajagopal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1764 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, R., Natesan, J., Archana, K.M. et al. Photocatalytic degradation of malachite green over differently synthesized nano-α-Fe2O3: a comprehensive pathway. Appl Nanosci (2024). https://doi.org/10.1007/s13204-024-03053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13204-024-03053-y

Keywords

Navigation