Skip to main content
Log in

A new frontier in imaging: natural ore-sourced superparamagnetic magnetite nanoparticles for multi-modal imaging

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In the ever-evolving field of medical diagnostics and imaging, the development of efficient and versatile contrast agents remains pivotal. This study presents a pioneering approach to synthesize superparamagnetic magnetite nanoparticles (SM-NPs) derived from natural ore using an environmentally friendly, green chemistry approach. These SM-NPs exhibit exceptional magnetic properties, surpassing all other forms of iron oxide, making them a novel and promising multi-imaging agent for various biomedical applications. The SM-NPs were synthesized with high purity from naturally occurring magnetite, sourced from the Earth's crust. Characterization via X-ray diffraction (XRD) confirmed the cubic spinel ferrites structure of the sample, with an average particle size of 21.24 nm. Fourier-Transform Infrared Spectroscopy (FT-IR) revealed the presence of elemental functional groups, further supporting the material's suitability for biomedical use. Morphological analysis using field emission scanning electron microscopy with energy-dispersive X-ray analysis (FESEM-EDX) unveiled agglomerated spherical particles ranging in size from 60 to 80 nm. The elemental composition analysis via EDX demonstrated predominant iron (Fe) and oxygen (O) elements at concentrations of 75.55% and 20.76%, respectively. The magnetic properties of the SMNPs were assessed using a vibrating sample magnetometer (VSM), revealing a superparamagnetic behavior, as evidenced by the M-H plot. Furthermore, X-ray imaging exhibited a significant signal, even with just 40 mg of the substance, suggesting its potential as a robust contrast agent. Complementary findings from computed tomography (CT) and magnetic resonance imaging (MRI) scans demonstrated substantial absorption capabilities, even at relatively low concentrations of SM-NPs. These remarkable attributes position the green-synthesized SM-NPs as a highly versatile and efficient multi-imaging agent for various biomedical applications. This single nanomaterial can revolutionize disease diagnosis, treatment monitoring, and drug delivery within the biomedical field, offering a greener and more effective approach to medical imaging and diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The respective authors are willing to provide the data sets created during and/or analyzed during the current investigation upon justifiable request. The data sets generated during and/or analyzed during the current study are available from the corresponding authors upon reasonable request.

References

  • Ajinkya N, Yu X, Kaithal P, Luo H, Somani P, Ramakrishna S (2020) Magnetic iron oxide nanoparticle (IONP) synthesis to applications: present and future. J Mater 13(20):4644. https://doi.org/10.3390/ma13204644

    Article  CAS  Google Scholar 

  • Alterary SS, AlKhamees A (2021) Synthesis, surface modifification, and characterization of Fe3O4@SiO2 core@shell nanostructure. Green Process Synth 10:384–391. https://doi.org/10.1515/gps-2021-0031

    Article  CAS  Google Scholar 

  • Amara D, Grinblat J, Margel S (2012) Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J Mater Chem 22(5):2188–2195

    Article  CAS  Google Scholar 

  • Attallah OA, Al-Ghobashy MA, Nebsen M, Salem MY (2017) Adsorptive removal of fluoroquinolones from water by pectin-functionalized magnetic nanoparticles: process optimization using a spectrofluorimetric assay. ACS Sustain Chem Eng 5(1):133–145

    Article  CAS  Google Scholar 

  • Benhammada A, Kesraoui M, Tarchoun AF, Chelouche S, Mezroua A (2020) Synthesis and characterization of α-Fe2O3 nanoparticles from different precursors and their catalytic effect on the thermal decomposition of nitrocellulose. J Thermochim Acta 686:178570. https://doi.org/10.1016/j.tca.2020.178570

    Article  CAS  Google Scholar 

  • Benitez MJ, Mishra D, Szary P, Badini Confalonieri GA, Feyen M, Lu AH, Agudo L, Eggeler G, Petracic O, Zabel H (2011) Structural and magnetic characterization of self-assembled iron oxide nanoparticle arrays. J Phys Condens Matter 23(12):126003

    Article  CAS  PubMed  Google Scholar 

  • Boote E, Fent G, Kattumuri V, Casteel S, Katti K, Chanda N, Churchill R (2010) Gold nanoparticle contrast in a phantom and juvenile swine: models for molecular imaging of human organs using x-ray computed tomography. Acad Radiol 17(4):410–417

    Article  PubMed  PubMed Central  Google Scholar 

  • Caballero-Calero O, Ares JR, Martín-González M (2021) Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the earth. Adv Sustain Syst 5(11):2100095

    Article  CAS  Google Scholar 

  • Cabrera L, Gutierrez S, Menéndez N, del Puerto-Morales M (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. J Electrochim Acta 53(8):3436–3441. https://doi.org/10.1016/j.electacta.2007.12.006

    Article  CAS  Google Scholar 

  • Chaki SH, Malek TJ, Chaudhary MD, Tailor JP, Deshpande MP (2015) Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Adv Nat Sci J Nanosci Nanotechnol 6:035009. https://doi.org/10.1088/2043-6262/6/3/035009

    Article  CAS  Google Scholar 

  • Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M (2022) Ultrasmall superparamagnetic iron oxide nanoparticles: a next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14(1):e1740

    Article  CAS  PubMed  Google Scholar 

  • Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK (2015) Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. J Nanomed 10(2):321–341. https://doi.org/10.2217/nnm.14.171

    Article  CAS  Google Scholar 

  • Dogan N, Dogan OM, Irfan M, Ozel F, Kamzin AS, SemenovI VG, Buryanenko V (2022) Manganese doped-iron oxide nanoparticles and their potential as tracer agents for magnetic particle imaging (MPI). J Magn Magn Mater 561:169654. https://doi.org/10.1016/j.jmmm.2022.169654

    Article  CAS  Google Scholar 

  • Dong P, Zhang T, Xiang H, Xu X, Lv Y, Wang Y, Lu C (2021) Controllable synthesis of exceptionally small-sized superparamagnetic magnetite nanoparticles for ultrasensitive MR imaging and angiography. J Mater Chem B 9(4):958–968

    Article  CAS  PubMed  Google Scholar 

  • Dulinska-Litewka J, Lazarczyk A, Halubiec P, Szafranski O, Karnas K, Karewicz A (2019) Superparamagnetic iron oxide nanoparticles—current and prospective medical applications. J Mater 12:617. https://doi.org/10.3390/ma12040617

    Article  CAS  Google Scholar 

  • Eid MM (2015) Spectroscopic characterization of iron oxide nanoparticles functionalized with chitosan biosynthesis by a clean one pot method. Middle East J Appl Sci 05(05):18–22

    Google Scholar 

  • Fu J, Guo J, Qin A et al (2020) Bismuth chelate as a contrast agent for X-ray computedtomography. J Nanobiotechnol 18:110. https://doi.org/10.1186/s12951-020-00669-4

    Article  CAS  Google Scholar 

  • Galli M, Guerrini A, Cauteruccio S, Thakare P, Dova D, Orsini F, Arosio P, Carrara C, Sangregorio C, Lascialfari A, Maggioni D, Licandro E (2017) Superparamagnetic iron oxide nanoparticles functionalized by peptide nucleic acids. J RSC Adv 7:15500–15512. https://doi.org/10.1039/C7RA00519A

    Article  CAS  Google Scholar 

  • Ganapathe LS, Mohamed MA, Yunus RM, Berhanuddin DD (2020) Magnetite (Fe3O4) nanoparticles in biomedical application: from synthesis to surface functionalisation. J Magnetochem 6(1):68. https://doi.org/10.3390/magnetochemistry6040068

    Article  CAS  Google Scholar 

  • Grab T, Gross U, Franzke U, Buschmann MH (2014) Operation performance of thermosyphons employing titania and gold nanofluids. Int J Therm Sci 86:352–364

    Article  CAS  Google Scholar 

  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253

    Article  CAS  PubMed  Google Scholar 

  • Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB (2023) Bio-inspired nanomaterials for micro/nanodevices: a new era in biomedical applications. Micromachines 14(9):1786

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidayah AN, Kamyar S, Chan AE, Chuah AL (2017) A facile and green synthetic approach toward fabrication of starch-stabilized magnetite nanoparticles. J Chin Chem Lett 28(7):1590–1596. https://doi.org/10.1016/j.cclet.2017.02.015

    Article  CAS  Google Scholar 

  • Karimzadeh I, Aghazadeh M, Doroudi T, Ganjali MR, Kolivand PH (2017) Superparamagnetic iron oxide (Fe3O4) nanoparticles coated with PEG/PEI for biomedical applications: a facile and scalable preparation route based on the cathodic electrochemical deposition method. J Adv Phys Chem. https://doi.org/10.1155/2017/9437487

    Article  Google Scholar 

  • Keshtkar M, Shahbazi-Gahrouei D, Mahmoudabadi A (2020) Synthesis an application of Fe3O4@Au compositenanoparticles as magnetic resonance/computed tomography dual-modality contrast agent. J Med Signals Sens 10(3):201–207. https://doi.org/10.4103/jmss.JMSS_55_19

    Article  PubMed  PubMed Central  Google Scholar 

  • Khanafer K, Vafai K (2006) The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery. Heat Mass Transf 42(10):939–953

    Article  CAS  Google Scholar 

  • Kharey P, Goel M, Husain Z, Gupta R, Sharma D, Manikandan M, Gupta S (2023) Green synthesis of biocompatible superparamagnetic iron oxide-gold composite nanoparticles for magnetic resonance imaging, hyperthermia and photothermal therapeutic applications. Mater Chem Phys 293:126859

    Article  CAS  Google Scholar 

  • Kim E-J, Lee H, Yeom A, Hong KS (2016) In vivo fluorescence imaging to assess early therapeutic response to tumor progression in a xenograft cancer model. J Biotechnol Bioproc E 21:567–572. https://doi.org/10.1007/s12257-016-0251-0

    Article  CAS  Google Scholar 

  • Koc MM, Aslan N, Kao AP, Barber AH (2019) Evaluation of X-ray tomography contrast agents: a review of production, protocols, and biological applications. J Microscopy Res Technique 82(6):812–848. https://doi.org/10.1002/jemt.23225

    Article  Google Scholar 

  • Kumar V, Gautam G, Singh A, Singh V, Mohan S, Mohan A (2022) Tribological behaviour of ZA/ZrB2 in situ composites using response surface methodology and artificial neural network. Surf Topogr Metrol Prop 10(4):045001

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. J Chem Rev 108(6):2064–2110. https://doi.org/10.1021/cr068445e

    Article  CAS  Google Scholar 

  • Li Q, Kartikowati CW, Horie S et al (2017) Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. J Sci Rep 7:9894. https://doi.org/10.1038/s41598-017-09897-5

    Article  CAS  Google Scholar 

  • Loizou K, Mourdikoudis S, Sergides A, Besenhard MO, Sarafidi C, Higashimine K, Kalogirou O, Maenosono S, Thanh NTK, Gavriilidis A (2020) Rapid millifluidic synthesis of stable high magnetic moment FexCy nanoparticles for hyperthermia. J ACS Appl Mater Interfaces 12(25):28520–32853. https://doi.org/10.1021/acsami.0c06192

    Article  CAS  Google Scholar 

  • Masrour R, Mounkachi O, El Moussaoui H et al (2013) Physical proprieties of ferrites nanoparticles. J Superconductivity and Novel Magnetism 26:3443–3447. https://doi.org/10.1007/s10948-013-2186-4

    Article  CAS  Google Scholar 

  • Neuwelt A, Sidhu N, Hu CAA, Mlady G, Eberhardt SC, Sillerud LO (2015) Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. AJR Am J Roentgenol 204(3):W302

    Article  PubMed  PubMed Central  Google Scholar 

  • Parveen S, Misra R, Sahoo SK (2017) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine in cancer. Pan Stanford, NY, pp 47–98

    Google Scholar 

  • Patra JK, Baek K-H (2017) Green biosynthesis of magnetic iron oxide (Fe3O4) nanoparticles using the aqueous extracts of food processing wastes under photo-catalyzed condition and investigation of their antimicrobial and antioxidant activity. J Photochem Photobiol b: Biol S1011–1344(17):30459–30461. https://doi.org/10.1016/j.jphotobiol.2017.05.045

    Article  CAS  Google Scholar 

  • Priyadarshana G, Kottegoda N, Senaratne A, de Alwis A, Karunaratne V (2015) Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. J Nanomater. https://doi.org/10.1155/2015/317312

    Article  Google Scholar 

  • Raja K, Mary-Jaculine M, Jose M, Verma S (2015) Sol-gel synthesis and characterization of α-Fe2O3 nanoparticles. J Superlattices Microstruct 86:3–4. https://doi.org/10.1016/j.spmi.2015.07.044

    Article  CAS  Google Scholar 

  • Sajja HK, East MP, Mao H, Wang YA, Nie S, Yang L (2009) Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr Drug Discov Technol 6(1):43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvador M, Gutierrez G, Noriega S, Moyano A, Blanco-Lopez MC, Matos M (2021) Microemulsion synthesis of superparamagnetic nanoparticlesfor bioapplications. Int J Mol Sci 22(1):427. https://doi.org/10.3390/ijms22010427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scatliff JH, Morris PJ (2014) From Roentgen to magnetic resonance imaging: the history of medical imaging. N C Med J 75(2):111–113

    PubMed  Google Scholar 

  • Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagneticiron oxide nanoparticles (SPION). J Nano Rev. https://doi.org/10.3402/nano.v1i0.5358

    Article  Google Scholar 

  • Stampanoni M, Wang Z, Thüring T, David C, Roessl E, Trippel M, Hauser N (2011) The first analysis and clinical evaluation of native breast tissue using differential phase-contrast mammography. Investig Radiol 46(12):801–806

    Article  CAS  Google Scholar 

  • Stoia M, Istratie R, Păcurariu C (2016) Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy. J Therm Anal Calorim 125:1185–1198. https://doi.org/10.1007/s10973-016-5393-y

    Article  CAS  Google Scholar 

  • Sun X, Zheng C, Zhang F, Yang Y, Wu G, Yu A, Guan N (2009) Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J Phys Chem C 113(36):16002–16008. https://doi.org/10.1021/jp9038682

    Article  CAS  Google Scholar 

  • Thangaraj B, Jia Z, Dai L, Liu D, Du W (2016) Lipase NS81006 immobilized on Fe3O4 magnetic nanoparticles for biodiesel production. J Ovidius Univ Ann Chem. https://doi.org/10.1515/auoc-2016-0008

    Article  Google Scholar 

  • The European Institute for Biomedical Imaging Research (EIBIR) (2019) Strategic research agenda for biomedical imaging. Insights Imaging. https://doi.org/10.1186/s13244-019-0684-z

    Article  Google Scholar 

  • Toyos-Rodríguez C, Calleja-García J, Torres-Sánchez L, López A, Abu-Dief AM, Costa A, Elbaile L, Crespo RD, Garitaonandia JS, Lastra E, García JA, Garcia-Alonso FJ (2019) A simple and reliable synthesis of superparamagnetic magnetite nanoparticles by thermal decomposition of Fe(acac). Hindawi J Nanomater. https://doi.org/10.1155/2019/2464010

    Article  Google Scholar 

  • Wallyn J, Anton N, Vandamme TF (2019) Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications: a review. J Pharm 11(11):601. https://doi.org/10.3390/pharmaceutics11110601

    Article  CAS  Google Scholar 

  • Xiao Y-D, Paudel R, Liu J, Ma C, Zhang Z-S, Zhou S-K (2016) MRI contrast agents: classification and application (Review). Int J Mol Med 38(5):1319–1326. https://doi.org/10.3892/ijmm.2016.2744

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Sun S (2013) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65(5):732–743

    Article  CAS  PubMed  Google Scholar 

  • Yan G-P, Robinson L, Hogg P (2007) Magnetic resonance imaging contrast agents: overview and perspectives. Radiography 13(1):e5–e19. https://doi.org/10.1016/j.radi.2006.07.005

    Article  Google Scholar 

  • Yusuf MS, Sutriyo S, Rahmasari R (2021a) Synthesis processing condition optimization of citrate stabilized superparamagnetic iron oxide nanoparticles using direct co-precipitation method. J Biomed Pharmacol 14(3):1533–1542. https://doi.org/10.13005/bpj/2255

    Article  CAS  Google Scholar 

  • Zappala S, Helliwell JR, Tracy SR, Mairhofer S, Sturrock CJ, Pridmore T, Mooney SJ (2013) Effects of X-ray dose on rhizosphere studies using X-ray computed tomography. PLoS ONE 8(6):e67250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Zheng L, Peng C, Li D, Li J, Wen S, Shi X (2014) Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl Mater Interfaces 6(19):17190–17199

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Funding

The authors declare that no funds, grants, or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AA: Conceptualization, methodology, writing—original draft preparation; MC: writing—review, editing and supervision; MNF: formal analysis, investigation, writing—editing; NP: formal analysis and interpretation.

Corresponding author

Correspondence to M. Chamundeeswari.

Ethics declarations

Conflict of interest

The authors hereby declare no conflicts of interest.

Ethical approval and consent to participate

This study did not require ethics approval.

Consent for publication

The authors state that the donor of the fecal sample that was employed in the study provided informed consent for publication of personal information.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asha, A., Chamundeeswari, M., Flora, R.M.N. et al. A new frontier in imaging: natural ore-sourced superparamagnetic magnetite nanoparticles for multi-modal imaging. Appl Nanosci 14, 559–573 (2024). https://doi.org/10.1007/s13204-023-02993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-023-02993-1

Keywords

Navigation