Skip to main content

Superparamagnetic Iron Oxide-Based Nanomaterials for Magnetic Resonance Imaging

  • Chapter
  • First Online:
Spinel Nanoferrites

Abstract

Magnetic resonance imaging (MRI) is the technique for the visualization of targeted macromolecules or cells in biological system. Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) have been attracted and remarkably emerging as a negative contrast agent (T2-weighted) offering sufficient detection sensitivity as compared to positive contrast agent (T1-weighted). In the present chapter, we first introduce the necessary background of superparamagnetic iron oxide-based nanoparticles and MRI taking into an account to discuss both T1T2-weighted imaging. The liquid-based synthesis methods of SPIONs and their applicability in MRI have been thoroughly revised. Finally, several nanohybrids such as magnetic-silica, magneto-luminescent, magneto-plasmonic along with ferrite-based SPIONs are thoroughly presented in light of MRI application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53:999–1005. https://doi.org/10.1002/mrm.20477

    Article  CAS  Google Scholar 

  2. Fan HM, Olivo M, Shuter B, Yi JB, Bhuvaneswari R, Tan HR, Xing GC, Ng CT, Liu L, Lucky SS, Bay BH, Ding J (2010) Quantum dot capped magnetite nanorings as high performance nanoprobe for multiphoton fluorescence and magnetic resonance imaging. J Am Chem Soc 132:14803–14811. https://doi.org/10.1021/ja103738t

    Article  CAS  Google Scholar 

  3. Matsumoto Y, Jasanoff A (2008) T2 relaxation induced by clusters of superparamagnetic nanoparticles: Monte Carlo simulations. Magn Reson Imaging 26:994–998. https://doi.org/10.1016/j.mri.2008.01.039

    Article  CAS  Google Scholar 

  4. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482. https://doi.org/10.1006/jcis.1998.6053

    Article  CAS  Google Scholar 

  5. Smolensky ED, Park HYE, Berquó TS, Pierre VC (2011) Surface functionalization of magnetic iron oxide nanoparticles for MRI applications—effect of anchoring group and ligand exchange protocol. Contrast Media Mol Imaging 6:189–199. https://doi.org/10.1002/cmmi.417

    Article  CAS  Google Scholar 

  6. Ho D, Sun X, Sun S (2011) Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res 44:875–882. https://doi.org/10.1021/ar200090c

    Article  CAS  Google Scholar 

  7. Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Mag Mater. North-Holland, pp 483–496

    Google Scholar 

  8. Cheng Y, Zhao L, Li Y, Xu T (2011) Design of biocompatible dendrimers for cancer diagnosis and therapy: current status and future perspectives. Chem Soc Rev 40:2673. https://doi.org/10.1039/c0cs00097c

    Article  CAS  Google Scholar 

  9. Sandiford L, Phinikaridou A, Protti A, Meszaros LK, Cui X, Yan Y, Frodsham G, Williamson PA, Gaddum N, Botnar RM, Blower PJ, Green MA, De Rosales RTM (2013) Bisphosphonate-anchored pegylation and radiolabeling of superparamagnetic iron oxide: long-circulating nanoparticles for in vivo multimodal (T1 MRI-SPECT) imaging. ACS Nano 7:500–512. https://doi.org/10.1021/nn3046055

    Article  CAS  Google Scholar 

  10. Jung H, Park B, Lee C, Cho J, Suh J, Park JY, Kim YR, Kim J, Cho G, Cho HJ (2014) Dual MRI T1 and T2(*) contrast with size-controlled iron oxide nanoparticles. Nanomed Nanotechnol Biol Med 10:1679–1689. https://doi.org/10.1016/j.nano.2014.05.003

    Article  CAS  Google Scholar 

  11. Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48:52–61. https://doi.org/10.1002/mrm.10192

    Article  CAS  Google Scholar 

  12. Hergt R, Dutz S, Zeisberger M, Gawalek W (2006) Nanocrystalline iron oxide and Ba ferrite particles in the superparamagnetism-ferromagnetism transition range with ferrofluid applications. J Phys Condens Matter 18:2527–2542. https://doi.org/10.1088/0953-8984/18/38/S01

    Article  CAS  Google Scholar 

  13. M. Benz (2012) Superparamagnetism : theory and applications

    Google Scholar 

  14. Jönsson PE (2004) Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems. Adv Chem Phys 128:191–248

    Google Scholar 

  15. Brown WF (1963) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677–1686. https://doi.org/10.1103/PhysRev.130.1677

    Article  Google Scholar 

  16. Papaefthymiou GC (2009) Nanoparticle magnetism. Nano Today 4:438–447. https://doi.org/10.1016/j.nantod.2009.08.006

    Article  CAS  Google Scholar 

  17. Benz M (2012) Superparamagnetism : theory and applications-discussion of two papers on magnetic nanoparticles

    Google Scholar 

  18. Zheng M, Wu XC, Zou BS, Wang YJ (1998) Magnetic properties of nanosized MnFe2O4 particles. J Magn Magn Mater 183:152–156. https://doi.org/10.1016/S0304-8853(97)01057-3

    Article  CAS  Google Scholar 

  19. Vedantam TS, Liu JP, Zeng H, Sun S (2003) Thermal stability of self-assembled FePt nanoparticles. J Appl Phys Am Inst Phys AIP, 7184–7186

    Google Scholar 

  20. Skomski R (2004) Nanomagnetic scaling. J Magn Magn Mater 272–276:1476–1481. https://doi.org/10.1016/j.jmmm.2003.12.175

    Article  CAS  Google Scholar 

  21. Kodama R (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372. https://doi.org/10.1016/S0304-8853(99)00347-9

    Article  CAS  Google Scholar 

  22. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50. https://doi.org/10.1016/0022-3697(61)90054-3

    Article  Google Scholar 

  23. Binder K (1986) Monte Carlo methods in statistical physics. Springer, Berlin

    Book  Google Scholar 

  24. Jamet M, Wernsdorfer W, Thirion C, Dupuis V, Mélinon P, Pérez A, Mailly D (2004) Magnetic anisotropy in single clusters. Phys Rev B 69:024401. https://doi.org/10.1103/PhysRevB.69.024401

  25. Eastham DA, Kirkman IW (2000) Highly enhanced orbital magnetism on cobalt cluster surfaces. J Phys Condens Matter 12:L525–L532. https://doi.org/10.1088/0953-8984/12/31/101

    Article  CAS  Google Scholar 

  26. Yanes R, Chubykalo-Fesenko O, Kachkachi H, Garanin DA, Evans R, Chantrell RW (2007) Effective anisotropies and energy barriers of magnetic nanoparticles with Neel surface anisotropy. https://doi.org/10.1103/PhysRevB.76.064416

  27. Respaud M, Broto JM, Rakoto H, Fert AR, Thomas L, Barbara B, Verelst M, Snoeck E, Lecante P, Mosset A, Osuna J, Ely TO, Amiens C, Chaudret B (1998) Surface effects on the magnetic properties of ultrafine cobalt particles. Phys Rev B 57:2925–2935. https://doi.org/10.1103/PhysRevB.57.2925

    Article  CAS  Google Scholar 

  28. Bødker F, Mørup S, Linderoth S (1994) Surface effects in metallic iron nanoparticles. Phys Rev Lett 72:282–285. https://doi.org/10.1103/PhysRevLett.72.282

    Article  Google Scholar 

  29. Luis F, Torres JM, García LM, Bartolomé J, Stankiewicz J, Petroff F, Fettar F, Maurice J-L, Vaurès A (2002) Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: influence of the surface and of interparticle interactions. Phys Rev B 65:094409. https://doi.org/10.1103/PhysRevB.65.094409

  30. Kainz QM, Reiser O (2014) Polymer- and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. Acc Chem Res 47:667–677. https://doi.org/10.1021/ar400236y

    Article  CAS  Google Scholar 

  31. Sun S (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403

    Article  CAS  Google Scholar 

  32. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 3:927–934. https://doi.org/10.1039/b207789b

    Article  CAS  Google Scholar 

  33. Yadav SK Nanoscale materials in targeted drug delivery, theragnosis and tissue regeneration

    Google Scholar 

  34. Das R, Cardarelli JA, Phan MH, Srikanth H (2019) Magnetically tunable iron oxide nanotubes for multifunctional biomedical applications. J Alloys Compd 789:323–329. https://doi.org/10.1016/j.jallcom.2019.03.024

    Article  CAS  Google Scholar 

  35. Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernández-García MP, Guedes A, Tavares PB, Grenèche J-M, Araújo JP, Freire C (2012) Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504. https://doi.org/10.1021/cm300301c

    Article  CAS  Google Scholar 

  36. Chekina N, Horák D, Jendelová P, Trchová M, Bene MJ, Hrubý M, Herynek V, Turnovcová K, Syková E (2011) Fluorescent magnetic nanoparticles for biomedical applications. J Mater Chem 21:7630–7639. https://doi.org/10.1039/c1jm10621j

    Article  CAS  Google Scholar 

  37. Miguel-Sancho N, Bomatí-Miguel O, Colom GO, Salvador J-P, Marco M-P, Santamaría J, De Bioingeniería C (2011) Development of stable, water-dispersible, and biofunctionalizable superparamagnetic iron oxide nanoparticles. Chem Mater 23:2795–2802. https://doi.org/10.1021/cm1036452

    Article  CAS  Google Scholar 

  38. Ye F, Laurent S, Fornara A, Astolfi L, Qin J, Roch A, Martini A, Toprak MS, Muller RN, Muhammed M (2012) Uniform mesoporous silica coated iron oxide nanoparticles as a highly efficient, nontoxic MRI T 2 contrast agent with tunable proton relaxivities. Contrast Media Mol Imaging 7:460–468. https://doi.org/10.1002/cmmi.1473

    Article  CAS  Google Scholar 

  39. Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, Thanh K (2016) Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale 8:3278–3287. https://doi.org/10.1039/c5nr03867g

    Article  CAS  Google Scholar 

  40. Huang J-H, Parab HJ, Liu R-S, Lai T-C, Hsiao M, Chen C-H, Sheu H-S, Chen J-M, Tsai D-P, Hwu Y-K (2008) Investigation of the growth mechanism of iron oxide nanoparticles via a seed-mediated method and its cytotoxicity studies. J Phys Chem C 112:15684–15690. https://doi.org/10.1021/jp803452j

    Article  CAS  Google Scholar 

  41. Zhu N, Ji H, Yu P, Niu J, Farooq M, Akram M, Udego I, Li H, Niu X, Zhu N, Ji H, Yu P, Niu J, Farooq MU, Akram MW, Udego IO, Li H, Niu X (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8:810. https://doi.org/10.3390/nano8100810

    Article  CAS  Google Scholar 

  42. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801. https://doi.org/10.1021/ja016812s

    Article  CAS  Google Scholar 

  43. Park C, Walker J, Tannenbaum R, Stiegman AE, Frydrych J, Machala L (2009) Sol−gel-derived iron oxide thin films on silicon: surface properties and interfacial chemistry. ACS Appl Mater Interfaces 1:1843–1846. https://doi.org/10.1021/am900362x

    Article  CAS  Google Scholar 

  44. Lu Y, Yin Y, Mayers BTA, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol−gel approach. Nano Lett 2:183–186. https://doi.org/10.1021/NL015681Q

  45. Park CD, Magana D, Stiegman AE (2007) High-quality Fe and γ-Fe2O3 magnetic thin films from an epoxide-catalyzed sol-gel process. Chem Mater 19:677–683. https://doi.org/10.1021/cm0617079

    Article  CAS  Google Scholar 

  46. Popescu RC, Andronescu E, Vasile BS (2019) Recent advances in magnetite Nanoparticle functionalization for nanomedicine. Nanomater (Basel, Switzerland) 9. https://doi.org/10.3390/nano9121791

  47. Itoh H, Sugimoto T (2003) Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci 265:283–295. https://doi.org/10.1016/S0021-9797(03)00511-3

    Article  CAS  Google Scholar 

  48. Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48:1276–1285. https://doi.org/10.1021/acs.accounts.5b00038

    Article  CAS  Google Scholar 

  49. Dias CSB, Hanchuk TDM, Wender H, Shigeyosi WT, Kobarg J, Rossi AL, Tanaka MN, Cardoso MB, Garcia F (2017) Shape tailored magnetic nanorings for intracellular hyperthermia cancer therapy. Sci Rep 7:14843. https://doi.org/10.1038/s41598-017-14633-0

    Article  CAS  Google Scholar 

  50. Cote LJ, Teja AS, Wilkinson AP, Zhang ZJ (2002) Continuous hydrothermal synthesis and crystallization of magnetic oxide nanoparticles. J Mater Res Res 17:2410–2416. https://doi.org/10.1557/JMR.2002.0352

    Article  CAS  Google Scholar 

  51. Pang YL, Lim S, Ong HC, Chong WT (2016) Research progress on iron oxide-based magnetic materials: synthesis techniques and photocatalytic applications. Ceram Int 42:9–34. https://doi.org/10.1016/j.ceramint.2015.08.144

    Article  CAS  Google Scholar 

  52. Sheng W, Liu J, Liu S, Lu Q, Kaplan Ac DL, Zhu H (2014) One-step synthesis of biocompatible magnetite/silk fibroin core-shell nanoparticles. J Mater Chem B 2:7394–7402. https://doi.org/10.1039/c4tb01125b

    Article  CAS  Google Scholar 

  53. Deepak FL, Bañobre-López M, Carbó-Argibay E, Cerqueira MF, Piñeiro-Redondo Y, Rivas J, Thompson CM, Kamali S, Rodríguez-Abreu C, Kovnir K, Kolenko YV (2015) A systematic study of the structural and magnetic properties of Mn-, Co-, and Ni-doped colloidal magnetite nanoparticles. J Phys Chem C 119:11947–11957. https://doi.org/10.1021/acs.jpcc.5b01575

    Article  CAS  Google Scholar 

  54. Rabenau A (1985) The role of hydrothermal synthesis in preparative chemistry. Angew Chemie Int Ed English 24:1026–1040. https://doi.org/10.1002/anie.198510261

    Article  Google Scholar 

  55. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878

    Article  CAS  Google Scholar 

  56. Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Google Scholar 

  57. Hu F, Jia Q, Li Y, Gao M (2011) Facile synthesis of ultrasmall PEGylated iron oxide nanoparticles for dual-contrast T1 - and T2 - weighted magnetic resonance imaging. Nanotechnology 22:245604. https://doi.org/10.1088/0957-4484/22/24/245604

  58. Li Z, Tan B, Allix M, Cooper AI, Rosseinsky MJ (2008) Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 4:231–239. https://doi.org/10.1002/smll.200700575

    Article  CAS  Google Scholar 

  59. Tromsdorf UI, Bruns OT, Salmen SC, Beisiegel U, Weller H (2009) A highly effective, nontoxic T1 MR contrast agent based on ultrasmall PEGylated iron oxide nanoparticles. Nano Lett 9:4434–4440. https://doi.org/10.1021/nl902715v

    Article  CAS  Google Scholar 

  60. Li Z, Yi PW, Sun Q, Lei H, Li Zhao H, Zhu ZH, Smith SC, Lan MB, Lu GQM (2012) Ultrasmall water-soluble and biocompatible magnetic iron oxide nanoparticles as positive and negative dual contrast agents. Adv Funct Mater 22:2387–2393. https://doi.org/10.1002/adfm.201103123

    Article  CAS  Google Scholar 

  61. Tao C, Chen Y, Wang D, Cai Y, Zheng Q, An L, Lin J, Tian Q, Yang S (2019) Macromolecules with different charges, lengths, and coordination groups for the coprecipitation synthesis of magnetic iron oxide nanoparticles as T1 MRI contrast agents. Nanomaterials 9:699. https://doi.org/10.3390/nano9050699

    Article  CAS  Google Scholar 

  62. Kovalenko MV, Bodnarchuk MI, Lechner RT, Hesser G, Friedrich Schäffler A, Heiss W (2007) Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: the case of inverse spinel iron oxide. J Am Chem Soc 129:6352–6353. https://doi.org/10.1021/JA0692478

    Article  CAS  Google Scholar 

  63. Yang H, Zhuang Y, Sun Y, Dai A, Shi Xiangyang X, Wu D, Li F, Hu H, Yang S (2011) Targeted dual-contrast T1- and T2-weighted magnetic resonance imaging of tumors using multifunctional gadolinium-labeled superparamagnetic iron oxide nanoparticles. Biomaterials 32:4584–4593. https://doi.org/10.1016/j.biomaterials.2011.03.018

    Article  CAS  Google Scholar 

  64. Zhang Q, Yin T, Gao G, Shapter JG, Lai W, Huang P, Qi W, Song J, Cui D (2017) Multifunctional Core@Shell magnetic nanoprobes for enhancing targeted magnetic resonance imaging and fluorescent labeling in vitro and in vivo. ACS Appl Mater Interfaces 9:17777–17785. https://doi.org/10.1021/acsami.7b04288

    Article  CAS  Google Scholar 

  65. Park J, An K, Hwang Y, Park JEG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895. https://doi.org/10.1038/nmat1251

    Article  CAS  Google Scholar 

  66. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles. J Am Chem Soc 126:273–279. https://doi.org/10.1021/ja0380852

    Article  CAS  Google Scholar 

  67. Park J, Lee E, Hwang NM, Kang M, Sung CK, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hyeon T (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chemie Int Ed 44:2872–2877. https://doi.org/10.1002/anie.200461665

    Article  CAS  Google Scholar 

  68. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205. https://doi.org/10.1021/ja026501x

    Article  CAS  Google Scholar 

  69. Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, Chen O, Chen Y, Li N, Okada S, Cordero JM, Heine M, Farrar CT, Montana DM, Adam G, Ittrich H, Jasanoff A, Nielsen P, Bawendi MG (2017) Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci U S A 114:2325–2330. https://doi.org/10.1073/pnas.1620145114

    Article  CAS  Google Scholar 

  70. Gaglia JL, Harisinghani M, Aganj I, Wojtkiewicz GR, Hedgire S, Benoist C, Mathis D, Weissleder R (2015) Noninvasive mapping of pancreatic inflammation in recent-onset type-1 diabetes patients. Proc Natl Acad Sci U S A 112:2139–2144. https://doi.org/10.1073/pnas.1424993112

    Article  CAS  Google Scholar 

  71. Bennett CL, Qureshi ZP, Sartor AO, Norris LB, Murday A, Xirasagar S, Thomsen HS (2012) History of nephrology gadolinium-induced nephrogenic systemic fibrosis: the rise and fall of an iatrogenic disease. Clin Kidney J 5:82–88. https://doi.org/10.1093/ckj/sfr172

    Article  CAS  Google Scholar 

  72. Bin NH, Lee JH, An K, Il PY, Park M, Lee IS, Nam D-H, Kim ST, Kim S-H, Kim S-W, Lim K-H, Kim K-S, Kim S-O, Hyeon T (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chemie 119:5493–5497. https://doi.org/10.1002/ange.200604775

    Article  Google Scholar 

  73. Hifumi H, Yamaoka S, Tanimoto A, Citterio D, Suzuki K (2006) Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J Am Chem Soc 128:15090–15091. https://doi.org/10.1021/ja066442d

    Article  CAS  Google Scholar 

  74. Kim BH, Lee N, Kim H, An K, Il PY, Choi Y, Shin K, Lee Y, Kwon SG, Bin NH, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631. https://doi.org/10.1021/ja203340u

    Article  CAS  Google Scholar 

  75. Wu L, Mendoza-Garcia A, Li Q, Sun S (2016) Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev 116:10473–10512

    Article  CAS  Google Scholar 

  76. Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7:11142–11154. https://doi.org/10.1039/c5nr01651g

    Article  CAS  Google Scholar 

  77. Chen Z (2012) Size and shape controllable synthesis of monodisperse iron oxide nanoparticles by thermal decomposition of iron oleate complex. Synth React Inorganic Met Nano-Metal Chem 42:1040–1046. https://doi.org/10.1080/15533174.2012.680126

    Article  CAS  Google Scholar 

  78. Roca AG, Veintemillas-Verdaguer S, Port M, Robic C, Serna CJ, Morales MP (2009) Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. J Phys Chem B 113:7033–7039. https://doi.org/10.1021/jp807820s

    Article  CAS  Google Scholar 

  79. Wan J, Cai W, Meng X, Liu E (2007) Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem Commun 5004–5006. https://doi.org/10.1039/b712795b

  80. Cheng C, Xu F, Gu H (2011) Facile synthesis and morphology evolution of magnetic iron oxide nanoparticles in different polyol processes. New J Chem 35:1072–1079. https://doi.org/10.1039/c0nj00986e

    Article  CAS  Google Scholar 

  81. Carenza E, Barceló V, Morancho A, Montaner J, Rosell A, Roig A (2014) Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells. Acta Biomater 10:3775–3785. https://doi.org/10.1016/j.actbio.2014.04.010

    Article  CAS  Google Scholar 

  82. Pellico J, Ruiz-Cabello J, Fernández-Barahona I, Gutiérrez L, Lechuga-Vieco AV, Enríquez JA, Morales MP, Herranz F (2017) One-step fast synthesis of nanoparticles for MRI: coating chemistry as the key variable determining positive or negative contrast. Langmuir 33:10239–10247. https://doi.org/10.1021/acs.langmuir.7b01759

    Article  CAS  Google Scholar 

  83. Pellico J, Ruiz-Cabello J, Saiz-Alía M, del Rosario G, Caja S, Montoya M, Fernández de Manuel L, Morales MP, Gutiérrez L, Galiana B, Enríquez JA, Herranz F (2016) Fast synthesis and bioconjugation of 68Ga core-doped extremely small iron oxide nanoparticles for PET/MR imaging. Contrast Media Mol Imaging 11:203–210. https://doi.org/10.1002/cmmi.1681

    Article  CAS  Google Scholar 

  84. Bhavesh R, Lechuga-Vieco AV, Ruiz-Cabello J, Herranz F (2015) T1-MRI fluorescent iron oxide nanoparticles by microwave assisted synthesis. Nanomaterials 5:1880–1890. https://doi.org/10.3390/nano5041880

    Article  CAS  Google Scholar 

  85. Hu L, Percheron A, Chaumont D, Brachais CH (2011) Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite. J Sol-Gel Sci Technol 60:198–205. https://doi.org/10.1007/s10971-011-2579-4

    Article  CAS  Google Scholar 

  86. Bano S, Nazir S, Nazir A, Munir S, Mahmood T, Afzal M, Ansari FL, Mazhar K (2016) Microwave-assisted green synthesis of superparamagnetic nanoparticles using fruit peel extracts: surface engineering, T2 relaxometry, and photodynamic treatment potential. Int J Nanomed 11:3833–3848. https://doi.org/10.2147/IJN.S106553

    Article  CAS  Google Scholar 

  87. Williams MJ, Sánchez E, Aluri ER, Douglas FJ, Maclaren DA, Collins OM, Cussen EJ, Budge JD, Sanders LC, Michaelis M, Smales CM, Cinatl J, Lorrio S, Krueger D, De Rosales RTM, Corr SA (2016) Microwave-assisted synthesis of highly crystalline, multifunctional iron oxide nanocomposites for imaging applications. RSC Adv 6:83520–83528. https://doi.org/10.1039/c6ra11819d

    Article  CAS  Google Scholar 

  88. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy. Chem Rev 115:10637–10689

    Article  CAS  Google Scholar 

  89. Ling D, Park W, Park SJ, Lu Y, Kim KS, Hackett MJ, Kim BH, Yim H, Jeon YS, Na K, Hyeon T (2014) Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J Am Chem Soc 136:5647–5655. https://doi.org/10.1021/ja4108287

    Article  CAS  Google Scholar 

  90. Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9:1450–1466

    Article  CAS  Google Scholar 

  91. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon Press Oxford, Oxford University Press, Oxford

    Google Scholar 

  92. Andrew ER (1955) Nuclear magnetic resonance. Cambridge University Press

    Google Scholar 

  93. Morris GA (2009) Spin dynamics: basics of nuclear magnetic resonance. In: Levitt MH (ed), 2nd edn. Wiley Chichester. 2008. pp xxv + 714. ISBN 978-0-470-51118-3(hbk) 978-0-470-51117-6 (pbk). NMR Biomed 22:240–241. https://doi.org/10.1002/nbm.1356

  94. Stuber M, Gilson WD, Schär M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JWM, Kraitchman DL (2007) Positive contrast visualization of iron oxide-labelled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 58:1072–1077. https://doi.org/10.1002/mrm.21399

    Article  Google Scholar 

  95. Bin NH, Hyeon T (2009) Nanostructured T1 MRI contrast agents. J Mater Chem 19:6267–6273. https://doi.org/10.1039/b902685a

    Article  CAS  Google Scholar 

  96. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352. https://doi.org/10.1021/cr980440x

    Article  CAS  Google Scholar 

  97. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523. https://doi.org/10.1039/b510982p

    Article  CAS  Google Scholar 

  98. Penfield JG, Reilly RF (2007) What nephrologists need to know about gadolinium. Nat Clin Pract Nephrol 3:654–668

    Article  Google Scholar 

  99. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275:772–782. https://doi.org/10.1148/radiol.15150025

    Article  Google Scholar 

  100. Kanal E, Tweedle MF (2015) Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology 275:630–634

    Article  Google Scholar 

  101. Javed Y, Akhtar K, Anwar H, Jamil Y (2017) MRI based on iron oxide nanoparticles contrast agents: effect of oxidation state and architecture. J Nanopart Res 19:1–25

    Article  CAS  Google Scholar 

  102. Levy M, Luciani N, Alloyeau D, Elgrabli D, Deveaux V, Pechoux C, Chat S, Wang G, Vats N, Gendron F, Factor C, Lotersztajn S, Luciani A, Wilhelm C, Gazeau F (2011) Long term in vivo biotransformation of iron oxide nanoparticles. Biomaterials 32:3988–3999. https://doi.org/10.1016/j.biomaterials.2011.02.031

    Article  CAS  Google Scholar 

  103. Regt de, Dijk van, Mullen van, Schram D, van Dijk J (1995) Components of continuum radiation in an inductively coupled plasma. J Phys D Appl Phys 28:40–46. https://doi.org/10.1088/0022-3727

  104. Linderoth S, Hendriksen PV, Bødker F, Wells S, Davies K, Charles SW, Mørup S (1994) On spin-canting in maghemite particles. J Appl Phys 75:6583–6585. https://doi.org/10.1063/1.356902

    Article  CAS  Google Scholar 

  105. Morales MP, Veintemillas-Verdaguer S, Montero MI, Serna CJ, Roig A, Casas LI, Martínez B, Sandiumenge F (1999) Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater 11:3058–3064. https://doi.org/10.1021/cm991018f

    Article  CAS  Google Scholar 

  106. Chan N, Laprise-Pelletier M, Chevallier P, Bianchi A, Fortin MA, Oh JK (2014) Multidentate block-copolymer-stabilized ultrasmall superparamagnetic iron oxide nanoparticles with enhanced colloidal stability for magnetic resonance imaging. Biomacromol 15:2146–2156. https://doi.org/10.1021/bm500311k

    Article  CAS  Google Scholar 

  107. Lee SH, Kim BH, Bin NH, Hyeon T (2014) Paramagnetic inorganic nanoparticles as T1 MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:196–209. https://doi.org/10.1002/wnan.1243

    Article  CAS  Google Scholar 

  108. Kucheryavy P, He J, John VT, Maharjan P, Spinu L, Goloverda GZ, Kolesnichenko VL (2013) Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29:710–716. https://doi.org/10.1021/la3037007

    Article  CAS  Google Scholar 

  109. Ai H (2011) Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev 63:772–788. https://doi.org/10.1016/j.addr.2011.03.013

    Article  CAS  Google Scholar 

  110. Shapiro EM, Skrtic S, Sharer K, Hill JM, Dunbar CE, Koretsky AP (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101:10901–10906. https://doi.org/10.1073/pnas.0403918101

    Article  CAS  Google Scholar 

  111. Gossuin Y, Gillis P, Hocq A, Vuong QL, Roch A (2009) Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:299–310. https://doi.org/10.1002/wnan.36

    Article  CAS  Google Scholar 

  112. Brooks RA (2002) T2-shortening by strongly magnetized spheres: a chemical exchange model. Magn Reson Med 47:388–391. https://doi.org/10.1002/mrm.10064

    Article  CAS  Google Scholar 

  113. Brooks RA, Moiny F, Gillis P (2002) On T2-shortening by strongly magnetized spheres: a partial refocusing model. Magn Reson Med 47:257–263. https://doi.org/10.1002/mrm.10059

    Article  Google Scholar 

  114. Brooks RA, Moiny F, Gillis P (2001) On T2-shortening by weakly magnetized particles: the chemical exchange model. Magn Reson Med 45:1014–1020. https://doi.org/10.1002/mrm.1135

    Article  CAS  Google Scholar 

  115. Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S, Yoon S, Kim KS, Shin JS, Suh JS, Cheon J (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733. https://doi.org/10.1021/ja0422155

    Article  CAS  Google Scholar 

  116. Moroz P, Metcalf C, Gray BN (2003) Histologic analysis of liver tissue following hepatic arterial infusion of ferromagnetic particles in a rabbit tumour model. Biometals 16:455–464. https://doi.org/10.1023/A:1022555431476

    Article  CAS  Google Scholar 

  117. Lee N, Kim H, Choi SH, Park M, Kim D, Kim HC, Choi Y, Lin S, Kim BH, Jung HS, Kim H, Park KS, Moon WK, Hyeon T (2011) Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci U S A 108:2662–2667. https://doi.org/10.1073/pnas.1016409108

    Article  Google Scholar 

  118. Lee N, Choi Y, Lee Y, Park M, Moon WK, Choi SH, Hyeon T (2012) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r 2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 12:3127–3131. https://doi.org/10.1021/nl3010308

    Article  CAS  Google Scholar 

  119. Pöselt E, Kloust H, Tromsdorf U, Janschel M, Hahn C, Maßlo C, Weller H (2012) Relaxivity optimization of a pegylated iron-oxide-based negative magnetic resonance contrast agent for T 2-weighted spin-echo imaging. ACS Nano 6:1619–1624. https://doi.org/10.1021/nn204591r

    Article  CAS  Google Scholar 

  120. Yoon TJ, Lee H, Shao H, Hilderbrand SA, Weissleder R (2011) Multicore assemblies potentiate magnetic properties of biomagnetic nanoparticles. Adv Mater 23:4793–4797. https://doi.org/10.1002/adma.201102948

    Article  CAS  Google Scholar 

  121. Lan F, Hu H, Jiang W, Liu K, Zeng X, Wu Y, Gu Z (2012) Synthesis of superparamagnetic Fe3O4/PMMA/SiO2 nanorattles with periodic mesoporous shell for lysozyme adsorption. Nanoscale 4:2264–2267. https://doi.org/10.1039/c2nr12125e

    Article  CAS  Google Scholar 

  122. Perez JM, Josephson L, O’Loughlin T, Högemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816–820. https://doi.org/10.1038/nbt720

    Article  CAS  Google Scholar 

  123. Liu G, Wang Z, Lu J, Xia C, Gao F, Gong Q, Song B, Zhao X, Shuai X, Chen X, Ai H, Gu Z (2011) Low molecular weight alkyl-polycation wrapped magnetite nanoparticle clusters as MRI probes for stem cell labeling and in vivo imaging. Biomaterials 32:528–537. https://doi.org/10.1016/j.biomaterials.2010.08.099

    Article  CAS  Google Scholar 

  124. Joshi HM, Lin YP, Aslam M, Prasad PV, Schultz-Sikma EA, Edelman R, Meade T, Dravid VP (2009) Effects of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation. J Phys Chem C 113:17761–17767. https://doi.org/10.1021/jp905776g

    Article  CAS  Google Scholar 

  125. Bárcena C, Sra AK, Chaubey GS, Khemtong C, Liu JP, Gao J (2008) Zinc ferrite nanoparticles as MRI contrast agents. Chem Commun 2224–2226. https://doi.org/10.1039/b801041b

  126. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J (2007) Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 13:95–99. https://doi.org/10.1038/nm1467

    Article  CAS  Google Scholar 

  127. Jang JT, Nah H, Lee JH, Moon SH, Kim MG, Cheon J (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chemie Int Ed 48:1234–1238. https://doi.org/10.1002/anie.200805149

    Article  CAS  Google Scholar 

  128. Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484–499. https://doi.org/10.1002/nbm.924

    Article  CAS  Google Scholar 

  129. Ahmed HU, Kirkham A, Arya M, Illing R, Freeman A, Allen C, Emberton M (2009) Is it time to consider a role for MRI before prostate biopsy? Nat Rev Clin Oncol 6:197–206

    Article  Google Scholar 

  130. Choi JS, Lee JH, Shin TH, Song HT, Kim EY, Cheon J (2010) Self-confirming “aND” logic nanoparticles for fault-free MRI. J Am Chem Soc 132:11015–11017. https://doi.org/10.1021/ja104503g

    Article  CAS  Google Scholar 

  131. Shin TH, Choi JS, Yun S, Kim IS, Song HT, Kim Y, Park KI, Cheon J (2014) T 1 and T 2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano 8:3393–3401. https://doi.org/10.1021/nn405977t

    Article  CAS  Google Scholar 

  132. Estelrich J, Sánchez-Martín MJ, Busquets MA (2015) Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomed 10:1727–1741. https://doi.org/10.2147/IJN.S76501

    Article  CAS  Google Scholar 

  133. Niu D, Luo X, Li Y, Liu X, Wang X, Shi J (2013) Manganese-loaded dual-mesoporous silica spheres for efficient T1- and T2-weighted dual mode magnetic resonance imaging. ACS Appl Mater Interfaces 5:9942–9948. https://doi.org/10.1021/am401856w

    Article  CAS  Google Scholar 

  134. Li F, Zhi D, Luo Y, Zhang J, Nan X, Zhang Y, Zhou W, Qiu B, Wen L, Liang G (2016) Core/shell Fe3O4/Gd2O3 nanocubes as: T 1- T 2 dual modal MRI contrast agents. Nanoscale 8:12826–12833. https://doi.org/10.1039/c6nr02620f

    Article  CAS  Google Scholar 

  135. Wang Z, Liu J, Li T, Liu J, Wang B (2014) Controlled synthesis of MnFe2O4 nanoparticles and Gd complex-based nanocomposites as tunable and enhanced T1/T 2-weighted MRI contrast agents. J Mater Chem B 2:4748–4753. https://doi.org/10.1039/c4tb00342j

    Article  CAS  Google Scholar 

  136. Bae KH, Kim YB, Lee Y, Hwang JY, Park H, Park TG (2010) Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T1- and T2-weighted magnetic resonance imaging. Bioconjug Chem 21:505–512. https://doi.org/10.1021/bc900424u

    Article  CAS  Google Scholar 

  137. Ding D, Kanaly C, Cummings T, Herndon J II, Raghavan R, Sampson J (2010) Convection-enhanced delivery of free gadolinium with the experimental chemotherapeutic agent PRX321. Neurol Res 32:810–815. https://doi.org/10.1179/174367509X12581069052090

    Article  Google Scholar 

  138. Ding D, Kanaly CW, Bigner DD, Cummings TJ, Herndon JE, Pastan I, Raghavan R, Sampson JH (2010) Convection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1. J Neurooncol 98:1–7. https://doi.org/10.1007/s11060-009-0046-7

    Article  CAS  Google Scholar 

  139. Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen RG, Olson J, Zhang M (2009) Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res 69:6200–6207. https://doi.org/10.1158/0008-5472.CAN-09-1157

    Article  CAS  Google Scholar 

  140. Veiseh O, Kievit FM, Fang C, Mu N, Jana S, Leung MC, Mok H, Ellenbogen RG, Park JO, Zhang M (2010) Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials 31:8032–8042. https://doi.org/10.1016/j.biomaterials.2010.07.016

    Article  CAS  Google Scholar 

  141. Veiseh O, Kievit FM, Gunn JW, Ratner BD, Zhang M (2009) A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials 30:649–657. https://doi.org/10.1016/j.biomaterials.2008.10.003

    Article  CAS  Google Scholar 

  142. Xiao N, Gu W, Wang H, Deng Y, Shi X, Ye L (2014) T1–T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. J Colloid Interface Sci 417:159–165. https://doi.org/10.1016/j.jcis.2013.11.020

    Article  CAS  Google Scholar 

  143. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227

    Article  CAS  Google Scholar 

  144. Torkashvand N, Sarlak N, Fe U (2019) Fabrication of a dual T 1 and T 2 contrast agent for magnetic resonance imaging using cellulose nanocrystals/Fe3O4 nanocomposite cellulose nanocrystals dual contrast agent magnetic resonance imaging. Cellular uptake. https://doi.org/10.1016/j.eurpolymj.2019.05.048

  145. Gao J, Liang G, Cheung JS, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu EX, Xu B (2008) Multifunctional yolk-shell nanoparticles: a potential MRI contrast and anticancer agent. J Am Chem Soc 130:11828–11833. https://doi.org/10.1021/ja803920b

    Article  CAS  Google Scholar 

  146. Kim J, Kim HS, Lee N, Kim T, Kim H, Yu T, Song IC, Moon WK, Hyeon T (2008) Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chemie 120:8566–8569. https://doi.org/10.1002/ange.200802469

    Article  Google Scholar 

  147. Sato K, Yokosuka S, Takigami Y, Hirakuri K, Fujioka K, Manome Y, Sukegawa H, Iwai H, Fukata N (2011) Size-tunable silicon/iron oxide hybrid nanoparticles with fluorescence, superparamagnetism, and biocompatibility. J Am Chem Soc 133:18626–18633. https://doi.org/10.1021/ja202466m

    Article  CAS  Google Scholar 

  148. Osborne EA, Atkins TM, Gilbert DA (2006) Gold-coated iron nanoparticles: a novel magnetic resonance agent for T 1 and T 2 weighted imaging related content rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology 17:640. https://doi.org/10.1088/0957-4484/17/3/004

    Article  CAS  Google Scholar 

  149. Efremova MV, Naumenko VA, Spasova M, Garanina AS, Abakumov MA, Blokhina AD, Melnikov PA, Prelovskaya AO, Heidelmann M, Li ZA, Ma Z, Shchetinin IV, Golovin YI, Kireev II, Savchenko AG, Chekhonin VP, Klyachko NL, Farle M, Majouga AG, Wiedwald U (2018) Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Sci Rep 8:11295. https://doi.org/10.1038/s41598-018-29618-w

    Article  CAS  Google Scholar 

  150. Lin J, Zhang W, Zhang H, Yang Z, Li T, Wang B, Huo X, Wang R, Chen H (2013) A multifunctional nanoprobe based on Au-Fe3O4 nanoparticles for multimodal and ultrasensitive detection of cancer cells. Chem Commun 49:4938–4940. https://doi.org/10.1039/c3cc41984c

    Article  CAS  Google Scholar 

  151. Reguera J, Jiménez De Aberasturi D, Henriksen-Lacey M, Langer J, Espinosa A, Szczupak B, Wilhelm C, Liz-Marzán LM (2017) Janus plasmonic-magnetic gold-iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale 9:9467–9480. https://doi.org/10.1039/c7nr01406f

    Article  CAS  Google Scholar 

  152. Xu C, Xie J, Ho D, Wang C, Kohler N, Walsh EG, Morgan JR, Chin YE, Sun S (2008) Au-Fe3O4 dumbbell nanoparticles as dual-functional. Angew Chemie Int Ed 47:173–176. https://doi.org/10.1002/anie.200704392

    Article  CAS  Google Scholar 

  153. Wang G, Gao W, Zhang X, Mei X (2016) Au Nanocage functionalized with ultra-small Fe3O4 nanoparticles for targeting T1–T2 dual MRI and CT imaging of tumor. Sci Rep 6:1–10. https://doi.org/10.1038/srep28258

    Article  CAS  Google Scholar 

  154. Wu C-H, Cook J, Emelianov S, Sokolov K (2014) Multimodal magneto-plasmonic nanoclusters for biomedical applications. Adv Funct Mater 24:6862–6871. https://doi.org/10.1002/adfm.201401806

    Article  CAS  Google Scholar 

  155. Chen H, Qi B, Moore T, Colvin DC, Crawford T, Gore JC, Alexis F, Mefford OT, Anker JN (2014) Synthesis of brightly pegylated luminescent magnetic upconversion nanophosphors for deep tissue and dual MRI imaging. Small 10:160–168. https://doi.org/10.1002/smll.201300828

    Article  CAS  Google Scholar 

  156. Xia A, Gao Y, Zhou J, Li C, Yang T, Wu D, Wu L, Li F (2011) Core-shell NaYF4:Yb3+, Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32:7200–7208. https://doi.org/10.1016/j.biomaterials.2011.05.094

    Article  CAS  Google Scholar 

  157. Okuhata Y (1999) Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev 37:121–137

    Article  CAS  Google Scholar 

  158. Xu C, Mu L, Roes I, Miranda-Nieves D, Nahrendorf M, Ankrum JA, Zhao W, Karp JM (2011) Nanoparticle-based monitoring of cell therapy. Nanotechnology 22:494001. https://doi.org/10.1088/0957-4484/22/49/494001

  159. Ly HQ, Frangioni JV, Hajjar RJ (2008) Imaging in cardiac cell-based therapy: in vivo tracking of the biological fate of therapeutic cells. Nat Clin Pract Cardiovasc Med 5:S96–S102

    Article  CAS  Google Scholar 

  160. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46

    Article  CAS  Google Scholar 

  161. Wang Y-XJ (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1:35–40. https://doi.org/10.3978/j.issn.2223-4292.2011.08.03

    Article  Google Scholar 

Download references

Acknowledgements

GN and SKS are thankful to Brazilian funding agencies CAPES, CNPq, and FAPEMA; MCM is thankful to CAPES-PNPD fellowship, Brazil for providing the funding to conduct this research (Process No. 23106.067256/2018-51). SKS is also very thankful to PPGF-UFMA for motivation to work on this book project. The author would also like to thank the various publishers to provide copyright permission to reproduce figures in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surender K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niraula, G. et al. (2021). Superparamagnetic Iron Oxide-Based Nanomaterials for Magnetic Resonance Imaging. In: Sharma, S.K. (eds) Spinel Nanoferrites. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79960-1_7

Download citation

Publish with us

Policies and ethics