Skip to main content
Log in

Facile strategy to construct porous CuO/CeO2 nanospheres with enhanced catalytic activity toward CO catalytic oxidation at low temperature

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Porous CuO/CeO2 nanospheres are synthesized by a facile route, which involves a template-free solvothermal method to obtain porous CeO2 nanospheres, followed by a deposition–precipitation (DP) method of as-prepared porous CeO2 nanospheres and Cu(NO3)2 solution. XRD, TEM, SEM, ICP-MS, and EDS elemental mapping confirm that the obtained porous CuO/CeO2 nanospheres are composed of CeO2 nanospheres decorated with small particle size and well-dispersed CuO nanoparticles (NPs). Meanwhile, the activity of CO catalytic oxidation study is tested; porous CuO/CeO2 nanospheres exhibit signally higher activity than undecorated CeO2 nanospheres and solid CuO/CeO2 nanospheres at low temperature. The improved performance of porous CuO/CeO2 nanospheres is possibly ascribed to the synergetic effect and strong interaction between porous CeO2 nanospheres and decorated CuO NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An Y, Naik P, Slowing II, Venditti V (2020) Substrate-support interactions mediate hydrogenation of phenolic compounds by Pd/CeO2 nanorods. ACS Appl Nano Mater 3:11282–11288

    Article  CAS  Google Scholar 

  • Ansari AA, Solanki PR, Malhotra BD (2009) Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film. J Bioethanol 142:179–184

    CAS  Google Scholar 

  • Bao H, Zhang Z, Hua Q, Huang W (2014) Compositions, structures, and catalytic activities of CeO2@Cu2O nanocomposites prepared by the template-assisted method. Langmuir 30:6427–6436

    Article  CAS  Google Scholar 

  • Barbato PS, Colussi S, Di Benedetto A, Landi G, Lisi L, Llorca J, Trovarelli A (2016) Origin of high activity and selectivity of CuO/CeO2 catalysts prepared by solution combustion synthesis in CO-PROX reaction. J Phys Chem C 120:13039–13048

    Article  CAS  Google Scholar 

  • Chen G, Xu Q, Yang Y, Li C, Huang T, Sun G, Zhang S, Ma D, Li X (2015) Facile and mild strategy to construct mesoporous CeO2-CuO nanorods with enhanced catalytic activity toward CO oxidation. ACS Appl Mater Inter 7:23538–23544

    Article  CAS  Google Scholar 

  • Chen G, Guo Z, Zhao W, Gao D, Li C, Ye C, Sun G (2017) Design of porous/hollow structured ceria by partial thermal decomposition of Ce–MOF and selective etching. ACS Appl Mater Inter 9:39594–39601

    Article  CAS  Google Scholar 

  • Chueh WC, Hao Y, Jung W, Haile SM (2011) High electrochemical activity of the oxide phase in model ceria-Pt and ceria-Ni composite anodes. Nat Mater 11:155–161

    Article  Google Scholar 

  • Cui X, Wang Y, Chen L, Shi J (2014) Synergetic catalytic effects in tri-component mesostructured Ru-Cu-Ce oxide nanocomposite in CO oxidation. Chem Cat Chem 6:2860–2871

    CAS  Google Scholar 

  • Davó-Quiñonero A, Bailón-García E, López-Rodríguez S, Juan-Juan J, Lozano-Castello D, García-Melchor M, Herrera FC, Pellegrin E, Escudero C (2020) Insights into the oxygen vacancy filling mechanism in CuO/CeO2 catalysts: a key step toward high selectivity in preferential CO oxidation. ACS Catal 10:6532–6545

    Article  Google Scholar 

  • Geng Y, Lian G, Wang J, Si H, Wang Q, Cui D, Wong CP (2016) Pressure-induced synthesis and evolution of ceria mesoporous nanostructures with enhanced catalytic performance. Cryst Growth Des 16:2466–2471

    Article  CAS  Google Scholar 

  • Kang R, Ma P, He J, Li H, Bin F, Wei X, Dou B, Hui NK (2021) Transient behavior and reaction mechanism of CO catalytic ignition over a CuO-CeO2 mixed oxide. Proc Combust Inst 38:6493–6501

    Article  CAS  Google Scholar 

  • Kim HJ, Zheng H, Park JS, Kim DH, Kang CJ, Jang JT, Kim DH, Yoon TS (2017) Artificial synaptic characteristics with strong analog memristive switching in a Pt/CeO2/Pt structure. Nanotechnology 28:285203

    Article  Google Scholar 

  • Konsolakis M, Lykaki M (2021) Facet-dependent reactivity of ceria nanoparticles exemplified by CeO2-based transition metal catalysts: a critical review. Catalysts 11:452

    Article  CAS  Google Scholar 

  • Kusmierek E (2020) A CeO2 semiconductor as a photocatalytic and photoelectrocatalytic material for the remediation of pollutants in industrial wastewater: a review. Catalysts 10:1435

    Article  CAS  Google Scholar 

  • Lee JH, Jo DY, Choung JW, Kim CH, Ham HC, Lee KY (2021) Roles of noble metals (M= Ag, Au, Pd, Pt and Rh) on CeO2 in enhancing activity toward soot oxidation: active oxygen species and DFT calculations. J Hazard Mater 403:124085

    Article  CAS  Google Scholar 

  • Li Z, Li L, Yuan Q, Feng W, Xu J, Sun L, Song W, Yan C (2008) Sustainable and facile route to nearly monodisperse spherical aggregates of CeO2 nanocrystals with ionic liquids and their catalytic activities for CO oxidation. J Phys Chem C 112:18405–18411

    Article  CAS  Google Scholar 

  • Li H, Lu G, Dai Q, Wang Y, Guo Y, Guo Y (2010) Hierarchical organization and catalytic activity of high-surface-area mesoporous ceria nanospheres prepared via hydrothermal routes. ACS Appl Mater Inter 2:838–846

    Article  CAS  Google Scholar 

  • Li X, Wang X, Liu D, Song S, Zhang H (2014) Multifunctional nanostructures based on porous silica covered Fe3O4@CeO2-Pt composites: a thermally stable and magnetically-recyclable catalyst system. Chem Commun 50:7198–7201

    Article  CAS  Google Scholar 

  • Li B, Shao L, Wang R, Dong X, Zhao F, Gao P, Li Z (2018) Interfacial synergism of Pd-decorated BiOCl ultrathin nanosheets for the selective oxidation of aromatic alcohols. J Mater Chem A 6:6344–6355

    Article  CAS  Google Scholar 

  • Li P, Chen X, Li Y, Schwank JW (2019) A review on oxygen storage capacity of CeO2-based materials: influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catal Today 327:90–115

    Article  CAS  Google Scholar 

  • Li L, Zhang N, Wu R, Song L, Zhang G, He H (2020) Comparative study of moisture-treated Pd@CeO2/Al2O3 and Pd/CeO2/Al2O3 catalysts for automobile exhaust emission reactions: effect of core-shell interface. ACS Appl Mater Inter 12:10350–10358

    Article  CAS  Google Scholar 

  • Liang X, Xun W, Yuan Z, Xu B, Li Y (2008) Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect. J Am Chem Soc 130:2736–2737

    Article  CAS  Google Scholar 

  • Liang X, Xiao J, Chen B, Li Y (2010) Catalytically stable and active CeO2 mesoporous spheres. Inorg Chem 49:8188–8190

    Article  CAS  Google Scholar 

  • Lin KS, Chowdhury S (2010) Synthesis, characterization, and application of 1-D cerium oxide nanomaterials: a review. Int J Mol Sci 11:3226–3251

    Article  CAS  Google Scholar 

  • Liu X, Yang H, Han L, Liu W, Zhang C, Zhang X, Wang S, Yang Y (2013) Mesoporous-shelled CeO2 hollow nanospheres synthesized by a one-pot hydrothermal route and their catalytic performance. Cryst Eng Comm 15:7769–7775

    Article  CAS  Google Scholar 

  • Lu G, Zheng H, Lv J, Wang G, Huang X (2020) Review of recent research work on CeO2-based electrocatalysts in liquid-phase electrolytes. J Power Sources 480:229091

    Article  CAS  Google Scholar 

  • Ma R, Zhang S, Wen T, Gu P, Li L, Zhao G, Niu F, Huang Q, Tang Z, Wang X (2018) A critical review on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants. Catal Today 335:20–30

    Article  Google Scholar 

  • Mishra K, Pradhan S, Akhtar MS, Yang WG, Kim SH, Lee YR (2021) Catalytic synergy of Au@CeO2-rGO nanohybrids for the reductive transformation of antibiotics and dyes. New J Chem. https://doi.org/10.1039/d1nj00180a

    Article  Google Scholar 

  • Nadeem M, Khan R, Afridi K, Nadhman A, Ullah S, Faisal S, Mabood ZU, Hano C, Abbasi BH (2020) Green synthesis of cerium oxide nanoparticles (CeO2 NPs) and their antimicrobial applications: a review. Int J Nanomed 15:5951

    Article  CAS  Google Scholar 

  • Pal D, Lavania R, Srivastava P, Singh P, Srivastava K, Madhav S, Mishra P (2018) Photo-catalytic degradation of methyl tertiary butyl ether from wastewater using CuO/CeO2 composite nanofiber catalyst. J Environ Chem Eng 6:2577–2587

    Article  CAS  Google Scholar 

  • Pastor-Pérez L, Ramos-Fernández EV, Sepúlveda-Escribano A (2019) Effect of the CeO2 synthesis method on the behaviour of Pt/CeO2 catalysis for the water-gas shift reaction. Int J Hydrogen Energ 44:21837–21846

    Article  Google Scholar 

  • Prasad R, Rattan G (2010) Preparation methods and applications of CuO-CeO2 catalysts: a short review. Bull Chem React Eng Catal 5:7

    Article  CAS  Google Scholar 

  • Qi L, Yu Q, Dai Y, Tang C, Liu L, Zhang H, Gao F, Dong L, Chen Y (2012) Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Appl Catal B-Environ 119:308–320

    Article  Google Scholar 

  • Shen W, Dong X, Zhu Y, Chen H, Shi J (2005) Mesoporous CeO2 and CuO-loaded mesoporous CeO2: synthesis, characterization, and CO catalytic oxidation property. Micropor Mesopor Mat 85:157–162

    Article  CAS  Google Scholar 

  • Sreeremya TS, Krishnan A, Remani KC, Patil KR, Brougham DF, Ghosh S (2015) Shape-selective oriented cerium oxide nanocrystals permit assessment of the effect of the exposed facets on catalytic activity and oxygen storage capacity. ACS Appl Mater Inter 7:8545–8555

    Article  CAS  Google Scholar 

  • Sun C, Li H, Chen L (2012) Nanostructured ceria-based materials: synthesis, properties, and applications. Energ Environ Sci 5:8475–8505

    Article  CAS  Google Scholar 

  • Sun S, Mao D, Yu J, Yang Z, Lu G, Ma Z (2015) Low-temperature CO oxidation on CuO/CeO2 catalysts: the significant effect of copper precursor and calcination temperature. Catal Sci Technol 5:3166–3181

    Article  CAS  Google Scholar 

  • Vayssilov GN, Lykhach Y, Migani A, Staudt T, Petrova GP, Tsud N, Skala T, Bruix A, Illas F, Prince KC, Matolin V, Neyman KM, Libuda J (2011) Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat Mater 10:310–315

    Article  CAS  Google Scholar 

  • Wang F, Wang X, Liu D, Zhen J, Li J, Wang Y, Zhen J, Li J, Wang Y, Zhang H (2014) High-performance ZnCo2O4@CeO2 core@shell nanospheres for catalytic CO oxidation. ACS Appl Mater Inter 6:22216–22223

    Article  CAS  Google Scholar 

  • Wang WW, Du PP, Zou SH, He HY, Wang RX, Jin Z, Shi S, Huang YY, Si R, Song QS, Jia CJ, Yan CH (2015) Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catal 5:2088–2099

    Article  CAS  Google Scholar 

  • Wang F, Büchel R, Savitsky A, Zalibera M, Widmann D, Pratsinis SE, Lubitz W, Schüth F (2016) In situ EPR study of the redox properties of CuO-CeO2 catalysts for preferential CO oxidation (PROX). ACS Catal 6:3520–3530

    Article  CAS  Google Scholar 

  • Wang C, Ren D, Du J, Qin Q, Zhang A, Chen L, Cui H, Chen J, Zhao Y (2020) In situ investigations on the facile synthesis and catalytic performance of CeO2-Pt/Al2O3 catalyst. Catalysts 10:143

    Article  CAS  Google Scholar 

  • Wei Y, Shahid MZ, Lyu SJ, Sun W, Lyu SS (2021) One-pot, ligand-free, room-temperature synthesis of Au/Pd/ZnO nanoclusters with ultra-low noble metal loading and synergistically improved photocatalytic performances. RSC Adv 11:22618–22624

    Article  CAS  Google Scholar 

  • Xiao L, Liu F, Liu J, Li J, Zhang Y, Yu J (2018) Nano-Fe3O4 particles accelerating electromethanogenesis on an hour-long timescale in wetland soil. Environ Sci-Nano 5:436–445

    Article  CAS  Google Scholar 

  • Xiao L, Sun R, Zhang P, Zheng S, Tan Y, Li J, Zhang Y, Liu F (2019) Simultaneous intensification of direct acetate cleavage and CO2 reduction to generate methane by bioaugmentation and increased electron transfer. Chem Eng J 378:3022–3027

    Article  Google Scholar 

  • Xiao L, Lichtfouse E, Kumar PS (2021) Advantage of conductive materials on interspecies electron transfer-independent acetoclastic methanogenesis: a critical review. Fuel 305:121577

    Article  CAS  Google Scholar 

  • Yuan Z, Zhang S, Shan J, Luan N, Tao F (2013) In situ surface chemistries and catalytic performances of ceria doped with palladium, platinum, and rhodium in methane partial oxidation for the production of syngas. ACS Catal 3:2627–2639

    Article  Google Scholar 

  • Zeng Y, Haw K, Wang Z, Wang Y, Zhang S, Hongmanorom P, Zhong Q, Kawi S (2021) Double redox process to synthesize CuO-CeO2 catalysts with strong Cu-Ce interaction for efficient toluene oxidation. J Hazard Mater 404:124088

    Article  CAS  Google Scholar 

  • Zerva C, Philippopoulos CJ (2006) Ceria catalysts for water gas shift reaction: influence of preparation method on their activity. Appl Catal B Environ 67:105–112

    Article  CAS  Google Scholar 

  • Zhang W, Xie G, Li S, Lu L, Liu B (2012) Au/CeO2-chitosan composite film for hydrogen peroxide sensing. Appl Surf Sci 258:8222–8227

    Article  CAS  Google Scholar 

  • Zheng Y, Mao D, Sun S, Fu G (2015) Solvothermal synthesis in ethylene glycol and catalytic activity for CO oxidation of CuO/CeO2 catalysts. J Mater Sci 51:917–925

    Article  Google Scholar 

  • Zou H, Chen S, Liu Z, Lin W (2011) Selective CO oxidation over CuO-CeO2 catalysts doped with transition metal oxides. Powder Technol 207:238–244

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51671094) and Dezhou University Scientific Research Fund Program (Grant No. 2020xjrc217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Liu or Jiafeng Yu.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2722 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Li, Y., Han, D. et al. Facile strategy to construct porous CuO/CeO2 nanospheres with enhanced catalytic activity toward CO catalytic oxidation at low temperature. Appl Nanosci 13, 3633–3641 (2023). https://doi.org/10.1007/s13204-021-02334-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-02334-0

Keywords

Navigation