Skip to main content
Log in

Efficient excitation of novel graphene plasmons using grating coupling

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Excitation of novel graphene plasmons is examined using finite-element analysis via COMSOL RF module 5.6. The theoretical model is simulated with graphene grating on the glass substrate having fixed periodicity (Λ = 700 nm) by illumination with transverse magnetic (TM) polarized light through the substrate side. The effect of thickness variation on SPPs excitation has been acquired from transmission spectra while keeping the periodicity and slit width of grating structure constant via analyzing the trend followed by the resonance dips. The electric and magnetic field behavior has also been analyzed for each thickness, and a specific grating thickness of 10 nm was taken into consideration owing to the thickness constraints regarding graphene. Slit width variation of the grating structure has been investigated using far-field analysis to observe the formation of SPPs from transmission spectra and near-field analysis for understanding the underlying physics. These analyses resulted in SPP excitation more appreciable at slit widths in between 250 and 350 nm. The slit width range regarding the chosen periodicity supports the most efficient plasmonics mode and many applications of such devices are found in real life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afsheen S et al (2019) Modeling of 1D Au plasmonic grating as efficient gas sensor. Mater Res Exp 6(12):126203

    Article  CAS  Google Scholar 

  • Afsheen S et al (2020) Surface plasmon based 1D-grating device for efficient sensing using noble metals. Opt Quantum Electron 52(2):64

    Article  CAS  Google Scholar 

  • Afsheen S et al (2020a) Optimizing the sensing efficiency of plasmonic based gas sensor. Plasmonics 2020:1–6

    Google Scholar 

  • Afsheen S et al (2020b) Optimizing the sensing efficiency of plasmonic based gas sensor. Plasmonics. https://doi.org/10.1007/s11468-020-01318-0

    Article  Google Scholar 

  • Anker JN et al (2010) Biosensing with plasmonic nanosensors. Nanosci Technol 2010(308):319

    Google Scholar 

  • Billaudeau C et al (2009) Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides. Opt Express 17(5):3490–3499

    Article  CAS  Google Scholar 

  • Darmanyan SA, Zayats AV (2003) Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study. Phys Rev B 67(3):035424

    Article  Google Scholar 

  • Fei Z et al (2011) Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface. Nano Lett 11(11):4701–4705

    Article  CAS  Google Scholar 

  • Gao W et al (2012) Excitation of plasmonic waves in graphene by guided-mode resonances. ACS Nano 6(9):7806–7813

    Article  CAS  Google Scholar 

  • Hessel A, Oliner A (1993) A new theory of Wood’s anomalies on optical gratings (from Applied Optics 1965). SPIE Milestone Series MS 83:332–332

    Google Scholar 

  • Iqbal T et al (2019) An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics 14(1):147–154

    Article  CAS  Google Scholar 

  • Iqbal T et al (2019) Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics 14(2):493–499

    Article  Google Scholar 

  • Iqbal T et al (2021) Study of plasmonic bandgap by optimization of geometrical parameters of metallic grating devices. Solid State Commun 2021:114212

    Article  Google Scholar 

  • Javaid M, Iqbal T (2016) Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics 11(1):167–173

    Article  CAS  Google Scholar 

  • Ju L et al (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630

    Article  CAS  Google Scholar 

  • Kociak M et al (2011) Spatially resolved EELS: the Spectrum-Imaging technique and its applications Scanning Transmission Electron Microscopy. Springer, Berlin, pp 163–205

    Book  Google Scholar 

  • Krasavin A, Zayats A (2007) Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 90(21):211101

    Article  Google Scholar 

  • Kumar M et al (2015) Examining the performance of refractory conductive ceramics as plasmonic materials: a theoretical approach. ACS Photonics 3(1):43–50

    Article  Google Scholar 

  • Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641

    Article  CAS  Google Scholar 

  • Liao H, Nehl CL, Hafner JH (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanaomedicine 1(2):201–208

    Article  CAS  Google Scholar 

  • Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  • Moskovits M (1985) Surface-enhanced spectroscopy. Rev Modern Phys 57(3):783

    Article  CAS  Google Scholar 

  • Myroshnychenko V et al (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37(9):1792–1805

    Article  CAS  Google Scholar 

  • Nikitin AY et al (2011) Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys Rev B 84(16):161407

    Article  Google Scholar 

  • O’Connor D (2010) Modelling of nano-optic light delivery mechanisms for use in high density data storage. Queen’s University Belfast, Belfast

    Google Scholar 

  • Raether H (1988) Surface plasmons on smooth surfaces. Surface plasmons on smooth and rough surfaces and on gratings. Springer, New York, pp 4–39

    Book  Google Scholar 

  • Rameshchandra KM (2014) Design and detailed study of graphene based plasmonic waveguide. VIT University, Vellore

    Google Scholar 

  • Ritchie RH (1957) Plasma losses by fast electrons in thin films. Phys Rev 106(5):874

    Article  CAS  Google Scholar 

  • Rosengart E-H, Pockrand I (1977) Influence of higher harmonics of a grating on the intensity profile of the diffraction orders via surface plasmons. Opt Lett 1(6):194–195

    Article  CAS  Google Scholar 

  • Thongrattanasiri S, Koppens FH, De Abajo FJG (2012a) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108(4):047401

    Article  Google Scholar 

  • Thongrattanasiri S, Manjavacas A, García de Abajo FJ (2012b) Quantum finite-size effects in graphene plasmons. ACS Nano 6(2):1766–1775

    Article  CAS  Google Scholar 

  • Weber J, Calado V, Van De Sanden M (2010) Optical constants of graphene measured by spectroscopic ellipsometry. Appl Phys Lett 97(9):091904

    Article  Google Scholar 

  • Yan H et al (2012) Plasmonics of coupled graphene micro-structures. New J Phys 14(12):125001

    Article  Google Scholar 

  • Zhao Y et al (2013) Infrared biosensors based on graphene plasmonics: modeling. Phys Chem Chem Phys 15(40):17118–17125

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tahir Iqbal or Almas Bashir.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, T., Bibi, S., Bashir, A. et al. Efficient excitation of novel graphene plasmons using grating coupling. Appl Nanosci 11, 1359–1365 (2021). https://doi.org/10.1007/s13204-021-01748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-021-01748-0

Keywords

Navigation