Skip to main content
Log in

Production and characterization of Cu/graphite composite by electrical explosion

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Metal–carbon materials are of great interest in many scientists due to the rich applications in various industries. Herein, we have demonstrated the rapid synthesis of Cu/graphite composite with characteristic of Cu nanoparticle size controllable in the graphite/ethyl alcohol turbid liquid by electrical explosion technology. The obtained Cu/graphite composite is characterized by TEM, ED, XRD, EDS, XPS and Raman spectrum. The results show that the Cu/graphite composite has been successfully synthesized in different charging voltages under a constant capacitance of 60 μF. The average size of Cu nanoparticles is less than 25 nm. It has also been found that the average nanoparticle size can be reduced by increasing the charging voltage. The Cu nanoparticles with uniform dispersion and less than 10 nm in size are synthesized under the charging voltage of 4000 V. Also, the obtained Cu/graphite composite shows the significant tribological behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adelhelm P, De Jongh PE (2011) The impact of carbon materials on the hydrogen storage properties of light metal hydrides. J Mater Chem A 21(8):2417–2427

    Article  CAS  Google Scholar 

  • Alqudami A, Annapoorni S, Shivaprasad SM (2008) Ag–Au alloy nanoparticles prepared by electro-exploding wire technique. J Nanopart Res 10(6):1027–1036

    Article  CAS  Google Scholar 

  • Aravinth S, Sankar B, Chakravarthi SR et al (2011) Generation and characterization of nano tungsten oxide particles by wire explosion process. Mater Charact 62(2):248–255

    Article  CAS  Google Scholar 

  • Bac LH, Kim BK, Kim JS et al (2011) Characteristics of Fe-Ni nanopowders prepared by electrical explosion of wire in water and ethanol. J. Magn. 16(4):435–439

    Article  Google Scholar 

  • Basariya MR, Srivastava VC, Mukhopadhyay NK (2014) Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Mater Des 64:542–549

    Article  Google Scholar 

  • Bien TN, Gu WH, Bac LH et al (2014) Preparation and characterization of copper-graphite composites by electrical explosion of wire in liquid. J. Nanosci. Nanotechno. 14(11):8750–8755

    Article  CAS  Google Scholar 

  • Cho CH, Park SH, Choi YW et al (2007) Production of nanopowders by wire explosion in liquid media. Surf Coat Technol 201(9-11):4847–4849

    Article  CAS  Google Scholar 

  • Dash PK (2011) Generation of nano-copper particles through wire explosion method and its characterization. Res J Nanosci Nanotechnol 1(1):25–33

    Article  Google Scholar 

  • Dewidar MM, Lim JK (2007) Manufacturing processes and properties of copper-graphite composites produced by high frequency induction heating sintering. J Compos Mater 41(18):2183–2194

    Article  CAS  Google Scholar 

  • Engelbrecht JT, Ouart ND, Qi N (2018) Enhancing the x-ray output of a single-wire explosion with a gas-puff based plasma opening switch. Phys Plasmas 25(2):022704

    Article  Google Scholar 

  • Giordano C, Antonietti M (2011) Synthesis of crystalline metal nitride and metal carbide nanostructures by sol–gel chemistry. Nano Today. 6(4):366–380

    Article  CAS  Google Scholar 

  • Giri VS, Sarathi R, Chakravarthy SR et al (2004) Studies on production and characterization of nano-Al2O3 powder using wire explosion technique. Mater Lett 58(6):1047–1050

    Article  Google Scholar 

  • Guo Y, Zhang Z, Zhang S (2019) Advances in the application of biomimetic surface engineering in the oil and gas industry. Friction 7(4):289–306

    Article  Google Scholar 

  • Huang J, Zhu N, Yang T et al (2015) Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells. Biosens Bioelectron 72:332–339

    Article  CAS  Google Scholar 

  • Ishihara S, Koishi T, Orikawa T et al (2012) Synthesis of intermetallic NiAl compound nanoparticles by pulsed wire discharge of twisted Ni and Al wires. Intermetallics 23:134–142

    Article  CAS  Google Scholar 

  • Kováčik J, Emmer Š, Bielek J (2008) Effect of composition on friction coefficient of Cu–graphite composites. Wear 265(3-4):417–421

    Article  Google Scholar 

  • Kwon YS, An VV, Ilyin AP et al (2007) Properties of powders produced by electrical explosions of copper–nickel alloy wires. Mater Lett 61(14-15):3247–3250

    Article  CAS  Google Scholar 

  • Lal M, Singhal SK, Sharma I et al (2013) An alternative improved method for the homogeneous dispersion of CNTs in Cu matrix for the fabrication of Cu/CNTs composites. Appl Nanosci 3(1):29–35

    Article  CAS  Google Scholar 

  • Lee YS, Bora B, Yap SL et al (2012) Effect of ambient air pressure on synthesis of copper and copper oxide nanoparticles by wire explosion process. Curr Appl Phys 12(1):199–203

    Article  Google Scholar 

  • Lee DH, Kim JC, Shim HW et al (2013) Highly reversible Li storage in hybrid NiO/Ni/graphene nanocomposites prepared by an electrical wire explosion process. ACS Appl Mater Inter 6(1):137–142

    Article  Google Scholar 

  • Lerner MI, Psakhie SG, Lozhkomoev AS et al (2018) Fe–Cu nanocomposites by high pressure consolidation of powders prepared by electric explosion of wires. Adv Eng Mater 20(8):1701024

    Article  Google Scholar 

  • Liu XM, Huang ZD, Oh S et al (2010) Sol–gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. J Power Sources 195(13):4290–4296

    Article  CAS  Google Scholar 

  • Liu L, Zhang Q, Zhao J et al (2013) Study on characteristics of nanopowders synthesized by nanosecond electrical explosion of thin aluminum wire in the argon gas. IEEE Trans Plasma Sci 41(8):2221–2226

    Article  CAS  Google Scholar 

  • Liu L, Zhao J, Yan W et al (2014) Influence of energy deposition on characteristics of nanopowders synthesized by electrical explosion of aluminum wire in the argon gas. IEEE Trans Nanotechnol 13(4):842–849

    Article  Google Scholar 

  • Liu Y, Ma L, Zhang D et al (2017) A simple route to prepare a Cu2O–CuO–GN nanohybrid for high-performance electrode materials. RSC Adv. 7(20):12027–12032

    Article  CAS  Google Scholar 

  • Liu B, Wang D, Guo Y (2018) Influence of water conductivity on shock waves generated by underwater electrical wire explosion. Phys Lett A 382(1):49–54

    Article  CAS  Google Scholar 

  • Lu Y, Zhu Z, Liu Z (2005) Carbon-encapsulated Fe nanoparticles from detonation-induced pyrolysis of ferrocene. Carbon 43(2):369–374

    Article  CAS  Google Scholar 

  • Ma XC, He GQ, He DH et al (2008) Sliding wear behavior of copper–graphite composite material for use in maglev transportation system. Wear 265(7-8):1087–1092

    Article  CAS  Google Scholar 

  • Merlen A, Buijnsters J, Pardanaud C (2017) A guide to and review of the use of multiwavelength Raman spectroscopy for characterizing defective aromatic carbon solids, from graphene to amorphous carbons. Coatings. 7(10):153

    Article  Google Scholar 

  • Park EJ, Lee SW, Bang IC et al (2011) Optimal synthesis and characterization of Ag nanofluids by electrical explosion of wires in liquids. Nanoscale Res Lett 6(1):223

    Article  Google Scholar 

  • Samal CP, Parihar JS, Chaira D (2013) The effect of milling and sintering techniques on mechanical properties of Cu–graphite metal matrix composite prepared by powder metallurgy route. J Alloy Compd 569:95–101

    Article  CAS  Google Scholar 

  • Sarathi R, Sindhu TK, Chakravarthy SR (2007) Generation of nano aluminium powder through wire explosion process and its characterization. Mater Charact 58(2):148–155

    Article  CAS  Google Scholar 

  • Sarathi R, Sindhu TK, Chakravarthy SR et al (2009) Generation and characterization of nano-tungsten particles formed by wire explosion process. J Alloy Compd 475(1-2):658–663

    Article  CAS  Google Scholar 

  • Sedoi VS, Ivanov YF (2008) Particles and crystallites under electrical explosion of wires. Nanotechnology 19(14):145710

    Article  CAS  Google Scholar 

  • Tan H, Wang D, Guo Y (2019) A strategy to synthesize multilayer graphene in arc-discharge plasma in a semi-opened environment. Materials. 12(14):2279

    Article  CAS  Google Scholar 

  • Wu W, Zhu Z, Liu Z (2003) A study of the explosion of Fe–C hybrid xerogels and the solid products. Carbon 41(2):309–315

    Article  CAS  Google Scholar 

  • Yu G, Huang X, Zou C et al (2012) Preparation of graphite@ Cu powders from ultrasonic powdering technique. Adv Powder Technol 23(1):16–21

    Article  CAS  Google Scholar 

  • Zhai Z, You Y, Ma L et al (2019) One-step in situ self-assembly of cypress leaf-like Cu(OH)2 nanostructure/graphene nanosheets composite with excellent cycling stability for supercapacitors. Nanoscale Res Lett 14(1):167

    Article  Google Scholar 

  • Zhang H, Zhang G, Li Z et al (2016) Ultra-uniform CuO/Cu in nitrogen-doped carbon nanofibers as a stable anode for Li-ion batteries. J Mater Chem A. 4(27):10585–10592

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Quan Xu (Institute of New Energy, China University of Petroleum, Beijing) for assisting in XRD and Raman analysis. This research was supported by grants from the National Natural Science Foundation of China (No. 51875578) and the Science Foundation of China University of Petroleum, Beijing (No. 2462017BJB06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbao Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H., Wang, D., Guo, Y. et al. Production and characterization of Cu/graphite composite by electrical explosion. Appl Nanosci 10, 995–1004 (2020). https://doi.org/10.1007/s13204-019-01196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01196-x

Keywords

Navigation