Skip to main content

Advertisement

Log in

Experimental study on the oxidation behavior and microstructural evolution of NG-CT-10 and NG-CT-20 nuclear graphite

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

NG-CT-10 and NG-CT-20 are newly developed grades of nuclear-grade graphite from China. In this study, their oxidation behaviors were experimentally investigated using thermal gravimetric analysis. Microstructural evolution before and after oxidation was investigated using scanning electron microscope, mercury intrusion, and Raman spectroscopy. The apparent activation energy of NG-CT-10 nuclear graphite is 161.4 kJ/mol in a reaction temperature range of 550–700 °C and that of NG-CT-20 is 153.5 kJ/mol in a temperature range of 550–650 °C. The activation energy in the inner diffusion control regime is approximately half that in the kinetics control regime. At high temperatures, the binder phase is preferentially oxidized over the filler particles and small pores are generated in the binder. No new large or deep pores are generated on the graphite surfaces. Oxygen can diffuse along the boundaries of filler particles and through the binder phase, but cannot diffuse into the spaces between the nanocrystallites in the filler particles. Filler particles are oxidized starting at their outer surfaces, and the sizes of nanocrystallites do not decrease following oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Zhang, Z. Wu, D. Wang et al., Current status and technical description of Chinese 2 × 250 MWth HTR-PM demonstration plant. Nucl. Eng. Des. 239, 1212–1219 (2009). https://doi.org/10.1016/j.nucengdes.2009.02.023

    Article  Google Scholar 

  2. Z. Zhang, Y. Dong, F. Li et al., The Shandong shidao bay 200 MWe high-temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant: an engineering and technological innovation. Engineering 2, 112–118 (2016). https://doi.org/10.1016/J.ENG.2016.01.020

    Article  Google Scholar 

  3. Z. Zhang, Y. Dong, W. Scherer, Assessments of water ingress accidents in modular high temperature gas cooled reactor. Nucl. Technol. 149, 253–264 (2005)

    Article  Google Scholar 

  4. C.I. Contescu, T. Guldan, P. Wang et al., The effect of microstructure on air oxidation resistance of nuclear graphite. Carbon 50, 3354–3366 (2012). https://doi.org/10.1016/j.carbon.2012.01.040

    Article  Google Scholar 

  5. P. Wang, C.I. Contescu, S. Yu et al., Pore structure development in oxidized IG-110 nuclear graphite. J. Nucl. Mater. 430, 229–238 (2012). https://doi.org/10.1016/j.jnucmat.2012.07.015

    Article  Google Scholar 

  6. C. Karthik, J. Kane, D.P. Butt et al., Microstructural characterization of next generation nuclear graphites. Microsc. Microanal. 18, 272–278 (2012). https://doi.org/10.1017/S1431927611012360

    Article  Google Scholar 

  7. C. Zhang, Z. He, Y. Gao et al., The effect of molten FLiNaK salt infiltration on the strength of graphite. J. Nucl. Mater. 512, 37–45 (2018). https://doi.org/10.1016/j.jnucmat.2018.09.051

    Article  Google Scholar 

  8. S. Jing, C. Zhang, J. Pu et al., 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10. Nucl. Sci. Tech. 27, 66 (2016). https://doi.org/10.1007/s41365-016-0071-0

    Article  Google Scholar 

  9. H. Tang, W. Qi, Z. He et al., Infiltration of graphite by molten 2LiF–BeF 2 salt. J. Mater. Sci. 52, 11346–11359 (2017). https://doi.org/10.1007/s10853-017-1310-4

    Article  Google Scholar 

  10. C. Zhang, H. Tang, Z.He et al., Dataset on the mechanical property of graphite after molten FLiNaK salt infiltration. Data Brief 21, 1963–1969 (2018). https://doi.org/10.1016/j.dib.2018.11.036

    Article  Google Scholar 

  11. T. Shibata, J. Sumita, T. Tada et al., Non-destructive evaluation methods for degradation of IG-110 and IG-430 graphite. J. Nucl. Mater. 381, 165–170 (2008). https://doi.org/10.1016/j.jnucmat.2008.07.014

    Article  Google Scholar 

  12. P.A. Thrower, G.K. Mathew, N.J. Mcginnis, The influence of oxidation on the structure and strength of graphite II: materials of different impurity content. Carbon 20, 457–464 (1982). https://doi.org/10.1016/0008-6223(82)90081-1

    Article  Google Scholar 

  13. D.W. McKee, Metal oxides as catalysts for the oxidation of graphite. Carbon 8, 623–635 (1970). https://doi.org/10.1016/0008-6223(70)90055-2

    Article  Google Scholar 

  14. T. Miyatani, H. Suzuki, O. Yoshimoto, Quantitative analysis of trace amounts of impurities contaminating pure graphite with ICP-MS and metal atomizer FLAAS. No. IAEA-TECDOC-690 (1993)

  15. H.K. Hinssen, K. Kühn, R. Moormann et al., Oxidation experiments and theoretical examinations on graphite materials relevant for the PBMR. Nucl. Eng. Des. 238, 3018–3025 (2008). https://doi.org/10.1016/j.nucengdes.2008.02.013

    Article  Google Scholar 

  16. E.L. Fuller, J.M. Okoh, Kinetics and mechanisms of the reaction of air with nuclear grade graphites: IG-110. J. Nucl. Mater. 240, 241–250 (1997). https://doi.org/10.1016/s0022-3115(96)00462-x

    Article  Google Scholar 

  17. E.S. Kim, C.H. Oh, C.H. No, Experimental study and model development on the moisture effect for nuclear graphite oxidation. Nucl. Technol. 164, 278–285 (2008). https://doi.org/10.13182/NT08-A4026

    Article  Google Scholar 

  18. X. Luo, J.C. Robin, S. Yu, Effect of temperature on graphite oxidation behavior. Nucl. Eng. Des. 227, 273–280 (2004). https://doi.org/10.1016/j.nucengdes.2003.11.004

    Article  Google Scholar 

  19. S.H. Chi, G.C. Kim, Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades. J. Nucl. Mater. 381, 9–14 (2008). https://doi.org/10.1016/j.jnucmat.2008.07.027

    Article  Google Scholar 

  20. H.C. Yang, H.C. Eun, D.G. Lee et al., Analysis of combustion kinetics of powdered nuclear graphite by using a non-isothermal thermogravimetric method. J. Nucl. Sci. Technol. 43, 1436–1439 (2006). https://doi.org/10.1080/18811248.2006.9711238

    Article  Google Scholar 

  21. P. Wang, S. Yu, Effects of gas flow rate and temperature on the oxidation rate of IG-110 nuclear graphite. J. Tsinghua Univ. (Sci. Tech.) 52, 504–547 (2012). https://doi.org/10.16511/j.cnki.qhdxxb.2012.04.032

    Article  Google Scholar 

  22. X. Luo, J.C. Robin, S. Yu, Comparison of oxidation behaviors of different grades of nuclear graphite. Nucl. Sci. Eng. 151, 121–127 (2005). https://doi.org/10.13182/NSE05-A2534

    Article  Google Scholar 

  23. D. Chen, Z. Li, M. Wei et al., Effects of porosity and temperature on oxidation behavior in air of selected nuclear graphites. Mater. Trans. 53, 1159–1163 (2012). https://doi.org/10.2320/matertrans.MBW201107

    Article  Google Scholar 

  24. X. Sun, Y. Dong, Y. Zhou et al., Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM. J. Nucl. Sci. Technol. 54, 196–204 (2016). https://doi.org/10.1080/00223131.2016.1233080

    Article  Google Scholar 

  25. Z. Hu, Z. Li, D. Chen et al., CO2 corrosion of IG-110 nuclear graphite studied by gas chromatography. J. Nucl. Sci. Technol. 51, 487–492 (2014). https://doi.org/10.1080/00223131.2013.877407

    Article  Google Scholar 

  26. S.H. Chi, G.C. Kim, Effects of air flow rate on the oxidation of NBG-18 and NBG-25 nuclear graphite. J. Nucl. Mater. 491, 37–42 (2017). https://doi.org/10.1016/j.jnucmat.2017.04.032

    Article  Google Scholar 

  27. I. Childres, L. Jauregui, W. Park et al., Raman spectroscopy of graphene and related materials. New Dev. Photon Mater. Res. 1, 1–20 (2013).

    Article  Google Scholar 

  28. A. Maslova, M.R. Ammar, G. Guimbretière et al., Determination of crystallite size in polished graphitized carbon by Raman spectroscopy. Phys. Rev. B 86, 134205 (2012). https://doi.org/10.1103/physrevb.86.134205

    Article  Google Scholar 

  29. F. Tuinstra, J.L. Koenig, Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970). https://doi.org/10.1063/1.1674108

    Article  Google Scholar 

  30. K.Y. Wen, T.J. Marrow, B.J. Marsden, The microstructure of nuclear graphite binders. Carbon 46, 62–71 (2008). https://doi.org/10.1016/j.carbon.2007.10.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Wei Li or Zheng-Cao Li.

Additional information

This work was financially supported by the National Natural Science Foundation of China (No. 51576103) and the National S&T Major Project (No. ZX06901).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Li, MY., Li, XW. et al. Experimental study on the oxidation behavior and microstructural evolution of NG-CT-10 and NG-CT-20 nuclear graphite. NUCL SCI TECH 30, 165 (2019). https://doi.org/10.1007/s41365-019-0693-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0693-0

Keywords

Navigation