Skip to main content
Log in

The effect of porous medium configuration on nanofluid heat transfer

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The simultaneous effects of the porous medium, i.e., an aluminium foam, and nanoparticles on heat transfer have not been investigated well. Therefore, a 3D computational fluid dynamics model was used in the present research to examine Al2O3/water-based nanofluid heat transfer using five cylinders with different configurations of porous media. An isothermal boundary condition was provided to all cylinders, and different configurations were compared with each other based on their Nusselt number (Nu) and enhancement parameter (EP) values. According to numerical results, due to the higher turbulency increment, the fully porous cylinder had the maximum improvement in the Nu number and the EP value (about 45% increment) in contrast to the empty cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Fluent 6.3 User’s Guide (2006). Fluent Inc, Centerra Resource Park, 10 Cavendish Court, Lebanon, NH 03766

  • Aguilar-Madera CG, Valdés-Parada FJ, Goyeau B, Ochoa-Tapia JA (2011) Convective heat transfer in a channel partially filled with a porous medium. Int J Therm Sci 50:1355–1368

    Article  Google Scholar 

  • Alvariño PF, Jabardo JS, Arce A, Galdo ML (2013) A numerical investigation of laminar flow of a water/alumina nanofluid. Int J Heat Mass Transf 59:423–432

    Article  Google Scholar 

  • Aspen Technology (2002) Hysys V3.2.2003 user guide. Hyprotech Aspen Technology, Inc

  • Azari A, Derakhshandeh M (2015) An experimental comparison of convective heat transfer and friction factor of Al2O3 nanofluids in a tube with and without butterfly tube inserts. J Taiwan Inst Chem Eng 52:31–39

    Article  CAS  Google Scholar 

  • Bianco V, Manca O, Nardini S (2011) Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int J Therm Sci 50:341–349

    Article  CAS  Google Scholar 

  • Darzi AAR, Farhadi M, Sedighi K (2014) Experimental investigation of convective heat transfer and friction factor of Al2O3/water nanofluid in helically corrugated tube. Exp Therm Fluid Sci 57:188–199

    Article  Google Scholar 

  • Enwald H, Peirano E, Almstedt A-E (1996) Eulerian two-phase flow theory applied to fluidization. Int J Multiph Flow 22:21–66

    Article  CAS  Google Scholar 

  • Gharibshahi R, Jafari A, Ahmadi H (2019) CFD investigation of enhanced extra-heavy oil recovery using metallic nanoparticles/steam injection in a micromodel with random pore distribution. J Pet Sci Eng 174:374–383

    Article  CAS  Google Scholar 

  • Godson L, Deepak K, Enoch C, Jefferson B, Raja B (2014) Heat transfer characteristics of silver/water nanofluids in a shell and tube heat exchanger. Arch Civ Mech Eng 14:489–496

    Article  Google Scholar 

  • Gunnasegaran P, Abdullah M, Yusoff M (2014) Effect of Al2O3-H2O nanofluid concentration on heat transfer in a loop heat pipe. Proc Mater Sci 5:137–146

    Article  CAS  Google Scholar 

  • Hajipour M, Dehkordi AM (2014) Mixed-convection flow of Al2O3–H2O nanofluid in a channel partially filled with porous metal foam: experimental and numerical study. Exp Therm Fluid Sci 53:49–56

    Article  CAS  Google Scholar 

  • Hatami M, Sheikholeslami M, Ganji D (2014) Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall. J Mol Liq 195:230–239

    Article  CAS  Google Scholar 

  • Hejazian M, Moraveji MK, Beheshti A (2014) Comparative study of Euler and mixture models for turbulent flow of Al2O3 nanofluid inside a horizontal tube. Int Commun Heat Mass Transf 52:152–158

    Article  CAS  Google Scholar 

  • Jafari A, Tynjälä T, Mousavi S, Sarkomaa P (2008a) Simulation of heat transfer in a ferrofluid using computational fluid dynamics technique. Int J Heat Fluid Flow 29:1197–1202

    Article  CAS  Google Scholar 

  • Jafari A, Zamankhan P, Mousavi S, Pietarinen K (2008b) Modeling and CFD simulation of flow behavior and dispersivity through randomly packed bed reactors. Chem Eng J 144:476–482

    Article  CAS  Google Scholar 

  • Jafari A, Shahmohammadi A, Mousavi SM (2015) CFD Investigation of gravitational sedimentation effect on heat transfer of a nano-ferrofluid. Iran J Chem Chem Eng (IJCCE) 34:87–96

    CAS  Google Scholar 

  • Jafari A, Hasani M, Hosseini M, Gharibshahi R (2019) Application of CFD technique to simulate enhanced oil recovery processes: current status and future opportunities. Pet Sci. https://doi.org/10.1007/s12182-019-00363-7

    Article  Google Scholar 

  • Lotfi R, Saboohi Y, Rashidi A (2010) Numerical study of forced convective heat transfer of nanofluids: comparison of different approaches. Int Commun Heat Mass Transf 37:74–78

    Article  CAS  Google Scholar 

  • Mahmoudi Y, Maerefat M (2011) Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition. Int J Therm Sci 50:2386–2401

    Article  Google Scholar 

  • Michaelides EES (2014) Nanofluidics. Springer International Publishing, Cham

    Book  Google Scholar 

  • Mirfendereski S, Abbassi A, Saffar-avval M (2015) Experimental and numerical investigation of nanofluid heat transfer in helically coiled tubes at constant wall heat flux. Adv Powder Technol 26:1483–1494

    Article  CAS  Google Scholar 

  • Nazari M, Ashouri M, Kayhani MH, Tamayol A (2015) Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam. Int J Therm Sci 88:33–39

    Article  CAS  Google Scholar 

  • Nield D, Kuznetsov A (2014) Forced convection in a parallel-plate channel occupied by a nanofluid or a porous medium saturated by a nanofluid. Int J Heat Mass Transf 70:430–433

    Article  Google Scholar 

  • Park SS, Kim NJ (2014) A study on the characteristics of carbon nanofluid for heat transfer enhancement of heat pipe. Renew Energy 65:123–129

    Article  CAS  Google Scholar 

  • Peng H, Ding G, Jiang W, Hu H, Gao Y (2009) Measurement and correlation of frictional pressure drop of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. Int J Refrig 32:1756–1764

    Article  CAS  Google Scholar 

  • Rana P, Dhanai R, Kumar L (2017) MHD slip flow and heat transfer of Al2O3-water nanofluid over a horizontal shrinking cylinder using Buongiorno’s model: effect of nanolayer and nanoparticle diameter. Adv Powder Technol 28:1727–1738

    Article  CAS  Google Scholar 

  • Rashad A, Chamkha A, Modather M (2013) Mixed convection boundary-layer flow past a horizontal circular cylinder embedded in a porous medium filled with a nanofluid under convective boundary condition. Comput Fluids 86:380–388

    Article  Google Scholar 

  • Reddy MCS, Rao VV (2014) Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int Commun Heat Mass Transf 50:68–76

    Article  Google Scholar 

  • Saha G, Paul MC (2015) Heat transfer and entropy generation of turbulent forced convection flow of nanofluids in a heated pipe. Int Commun Heat Mass Transf 61:26–36

    Article  CAS  Google Scholar 

  • Sajadi A, Kazemi M (2011) Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube. Int Commun Heat Mass Transf 38:1474–1478

    Article  CAS  Google Scholar 

  • Sarafraz M, Hormozi F (2015) Intensification of forced convection heat transfer using biological nanofluid in a double-pipe heat exchanger. Exp Therm Fluid Sci 66:279–289

    Article  CAS  Google Scholar 

  • Selimefendigil F, Ismael MA, Chamkha AJ (2017) Mixed convection in superposed nanofluid and porous layers in square enclosure with inner rotating cylinder. Int J Mech Sci 124:95–108

    Article  Google Scholar 

  • Servati AA, Javaherdeh K, Ashorynejad HR (2014) Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method. Adv Powder Technol 25:666–675

    Article  Google Scholar 

  • Shahmohammadi A (2014) Application of different CFD multiphase models to investigate effects of baffles and nanoparticles on heat transfer enhancement. Front Chem Sci Eng 8:320–329

    Article  CAS  Google Scholar 

  • Sundar LS, Singh MK, Bidkin I, Sousa AC (2014) Experimental investigations in heat transfer and friction factor of magnetic Ni nanofluid flowing in a tube. Int J Heat Mass Transf 70:224–234

    Article  CAS  Google Scholar 

  • Utomo AT et al (2014) The effect of nanoparticles on laminar heat transfer in a horizontal tube. Int J Heat Mass Transf 69:77–91

    Article  CAS  Google Scholar 

  • Xue Q-Z (2003) Model for effective thermal conductivity of nanofluids. Phys Lett A 307:313–317

    Article  CAS  Google Scholar 

  • Zhang Z, Huo Y, Guo D (2013) A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Sci China Technol Sci 56:2099–2108

    Article  CAS  Google Scholar 

  • Zhang Z, Cui J, Wang B, Wang Z, Kang R, Guo D (2017) A novel approach of mechanical chemical grinding. J Alloy Compd 726:514–524

    Article  CAS  Google Scholar 

  • Zhang Z, Shi Z, Du Y, Yu Z, Guo L, Guo D (2018) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415

    Article  CAS  Google Scholar 

  • Zhang Z, Cui J, Zhang J, Liu D, Yu Z, Guo D (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467:5–11

    Article  Google Scholar 

  • Zhao N, Yang J, Li H, Zhang Z, Li S (2016) Numerical investigations of laminar heat transfer and flow performance of Al2O3–water nanofluids in a flat tube. Int J Heat Mass Transf 92:268–282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezou Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alihosseini, S., Jafari, A. The effect of porous medium configuration on nanofluid heat transfer. Appl Nanosci 10, 895–906 (2020). https://doi.org/10.1007/s13204-019-01192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01192-1

Keywords

Navigation