Skip to main content
Log in

Heat transfer enhancement by natural convection in a partially porous annular space between two coaxial cylinders saturated by Cu–water nanofluid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The aim of this research is to investigate heat transfer by free convection in an annular, partially porous space between two coaxial cylinders with a permeable interface saturated by (Cu–water) nanofluid. The inner cylinder of the enclosure is kept at a constant hot temperature, while the outer is kept at a constant cold temperature. The base walls are impermeable and insulated. A finite difference-based vorticity-stream function approach is used to solve the nonlinear coupled conservation equations with prescribed boundary conditions, whereas the Successive Over Relaxation algorithm is used to solve the stream function equation. The obtained numerical results in terms of streamlines, isotherms, and heat transfer rate expressed by the Nusselt number are presented to demonstrate the effect of various control parameters, such as the Rayleigh number \(10^{4} \le \mathrm{{Ra}} \le 10^{6}\), Darcy number \(10^{-5} \le \mathrm{{Da}} \le 10^{-2}\), porosity \(0.1\le \epsilon \le 0.9\), nanoparticles concentration \(0.01\le \phi \le 0.05\) and the effective thermal conductivity. They showed that the increase in the Ra number and nanoparticle concentration causes an improvement in thermal energy transmission across the active wall. Also, the increase in the Da number makes the medium more permeable, which means more freedom for nanofluid to move. The results also show a significant effect of the porous layer thickness on the fluid flow pattern and the rate of thermal energy transport. Furthermore, this study demonstrates that there is a critical value of porosity for a given nanoparticle concentration for better heat transfer enhancement. Nonetheless, the purpose of this research could be to better understand the behavior of the nanofluid in this specific configuration, as well as to understand how other characteristics like porosity and porous layer thickness might influence heat transfer and fluid flow characteristics. This knowledge will be useful in a variety of industrial and technological applications where heat transfer efficiency is critical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AL:

Aspect ratio

\(R_{i}\) :

Inner radius

\(R_{e}\) :

Outer radius

H :

Cavity height

g :

Gravity acceleration

r, z :

System coordinate

\({\overline{r}},{\overline{z}}\) :

Dimensionless coordinate

\(\textit{T}\) :

Temperature function

\({\overline{T}}\) :

Dimensionless temperature

UW :

Velocity component

\({\overline{U}},{\overline{W}}\) :

Dimensionless velocity component

K :

Porous medium permeability

Da:

Da number

Pr:

Prandtl number

Ra:

Rayleigh number

\(\mathrm{{Nu}}_{{\mathrm{{{ave}}}}}\) :

Average Nusselt number

\(\mathrm{{Nu}}_{\mathrm{{{loc}}}}\) :

Local Nusselt number

\(C_{p}\) :

Specific capacity

\(\Sigma , \Lambda\) :

Nanofluid constants

\(\beta\) :

Thermal expansion coefficient

\(\lambda\) :

Thermal conductivity

\(\phi\) :

Nanoparticle concentration

\(\mu\) :

Dynamic viscosity

\(\rho\) :

Density

\(\Gamma\) :

Effective viscosity

\(\alpha\) :

Thermal diffusivity

\(\Omega\) :

Vorticity function

\({\overline{\Omega }}\) :

Dimensionless vorticity

\({\overline{\Psi }}\) :

Dimensionless stream function

p :

Porous medium

nf:

Nanofluid

eff:

Effective

c:

Cold

h:

Hot

\(b_{f}\) :

Base fluid

\(n_{p}\) :

Solid nanoparticles

\(\epsilon\) :

Porosity

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. Proc. ASME Int. Mech. Eng. Congress Expos. 66, 99–105 (1995)

    Google Scholar 

  2. G.S. Beavers, D.D. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967). https://doi.org/10.1017/S0022112067001375

    Article  ADS  Google Scholar 

  3. Q. Li, R. Zhang, P. Hu, Effect of thermal boundary conditions on forced convection under LTNE model with no-slip porous-fluid interface condition. Int. J. Heat Mass Transf. 167, 120803 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120803

    Article  Google Scholar 

  4. Q. Li, P. Hu, Analytical solutions of fluid flow and heat transfer in a partial porous channel with stress jump and continuity interface conditions using LTNE model. Int. J. Heat Mass Transf. 128, 1280–1295 (2019)

    Article  Google Scholar 

  5. P. Hu, Q. Li, Effect of heat source on forced convection in a partially-filled porous channel under LTNE condition. Int. Commun. Heat. Mass. Transf. 114, 104578 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104578

    Article  Google Scholar 

  6. S.A.M. Mehryan, M. Ghalambaz, M. Izadi, Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J. Therm. Anal. Calorim. 135, 1047–1067 (2019). https://doi.org/10.1007/s10973-018-7380-y

    Article  CAS  Google Scholar 

  7. A.I. Alsabery, A.J. Chamkha, H. Saleh, I. Hashim, B. Chanane, Darcian natural convection in an inclined trapezoidal cavity partly filled with a porous layer and partly with a nanofluid layer. Sains Malays. 46(5), 803–815 (2017)

    Article  CAS  Google Scholar 

  8. S. Rashidi, A. Nouri-Borujerdi, M.S. Valipour, R. Ellahi, I. Pop, Stress-jump and continuity interface conditions for a cylinder embedded in a porous medium. Transp. Porous Media. 107, 171–186 (2015)

    Article  CAS  Google Scholar 

  9. A.J. Chamkha, A.I. MuneerA, Natural convection in differentially heated partially porous layered cavities filled with a nanofluid. Numer. Heat. Transf. A Appl. 65(11), 1089–1113 (2014). https://doi.org/10.1080/10407782.2013.851560

    Article  ADS  CAS  Google Scholar 

  10. M.A. Sheremet, I. Pop, Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das’ nanofluid model. Eur. Phys. J. Plus. 130, 107 (2015). https://doi.org/10.1140/epjp/i2015-15107-4

    Article  CAS  Google Scholar 

  11. N. Karimi, Y. Mahmoudi, K. Mazaheri, Temperature fields in a channel partially filled with a porous material under local thermal non-equilibrium condition—an exact solution. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228(15), 2778–2789 (2014). https://doi.org/10.1177/0954406214521800

    Article  Google Scholar 

  12. Y. Mahmoudi, N. Karimi, Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition. Int. J. Heat Mass Transf. 68, 161–173 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.020

    Article  Google Scholar 

  13. M.S. Astanina, M.A. Sheremet, H.F. Oztop, N. Abu-Hamdeh, Natural convection in a differentially heated enclosure having two adherent porous blocks saturated with a nanofluid. Eur. Phys. J. Plus. 132, 1–10 (2017). https://doi.org/10.1140/epjp/i2017-11769-0

    Article  CAS  Google Scholar 

  14. A.J. Chamkha, A.I. Muneer, Conjugate heat transfer in a porous cavity filled with nanofluids and heated by a triangular thick wall. Int. J. Therm. Sci. 67, 135–151 (2013). https://doi.org/10.1016/j.ijthermalsci.2012.12.002

    Article  CAS  Google Scholar 

  15. A. Tahmasebi, M. Mahdavi, M. Ghalambaz, Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer. Heat. Transf. A Appl. 73(4), 254–276 (2018). https://doi.org/10.1080/10407782.2017.1422632

    Article  ADS  CAS  Google Scholar 

  16. K. Yang, H. Chen, K. Vafai, Investigation of the momentum transfer conditions at the porous/free fluid interface: a benchmark solution. Numer. Heat. Transf. A Appl. 71(6), 609–625 (2017). https://doi.org/10.1080/10407782.2017.1293977

    Article  ADS  Google Scholar 

  17. M. Torabi, N. Karimi, K. Zhang, Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources. Energy 93, 106–127 (2015). https://doi.org/10.1016/j.energy.2015.09.010

    Article  Google Scholar 

  18. M. Torabi, K. Zhang, G. Yang, J. Wang, P. Wu, Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model. Energy 82, 922–938 (2015). https://doi.org/10.1016/j.energy.2015.01.102

    Article  Google Scholar 

  19. A. BaqaieSaryazdi, F. Talebi, T. Armaghani, I. Pop, Numerical study of forced convection flow and heat transfer of a nanofluid flowing inside a straight circular pipe filled with a saturated porous medium. Eur. Phys. J. Plus. 131, 1–11 (2016). https://doi.org/10.1140/epjp/i2016-16078-6

    Article  CAS  Google Scholar 

  20. K. Yang, K. Vafai, Restrictions on the validity of the thermal conditions at the porous-fluid interface-an exact solution. J. Heat Transf. 133(11), 112601 (2011). https://doi.org/10.1115/1.4004350

    Article  Google Scholar 

  21. A. Bendaraa, M.M. Charafi, A. Hasnaoui, Numerical modeling of natural convection in horizontal and inclined square cavities filled with nanofluid in the presence of magnetic field. Eur. Phys. J. Plus. 134, 468 (2019). https://doi.org/10.1140/epjp/i2019-12814-8

    Article  CAS  Google Scholar 

  22. M. Sammouda, K. Gueraoui, M. Driouich, A. El Hammoumi, A.I. Brahim, The variable porosity effect on the natural convection in a non-Darcy porous media. Int. Rev. Model. Simul. (2011). https://doi.org/10.15866/iremos.v7i2.585

  23. M. Sammouda, K. Gueraoui, MHD double diffusive convection of \({\rm{Al_{2}O_{3}}}\)-water nanofluid in a porous medium filled an annular space inside two vertical concentric cylinders with discrete heat flux. J. Appl. Fluid Mech. 14(5), 1459–1468 (2021). https://doi.org/10.47176/JAFM.14.05.32388

    Article  Google Scholar 

  24. M. Sammouda, K. Gueraoui, M. Driouich, S. Belhouideg, The effect of \({\rm{Al_{2}O_{3}}}\) nanoparticles sphericity on heat transfer by free convection in an annular metal-based porous space between vertical cylinders submitted to a discrete heat flux. J. Porous Media. 25(2),(2022). https://doi.org/10.1615/ComputThermalScien.2021037663

  25. O. Mahian, A. Kianifar, C. Kleinstreuer, A.N. Moh’d A, I. Pop, A.Z. Sahin, S. Wongwises, A review of entropy generation in nanofluid flow. Int. J. Heat Mass Transf. 65, 514–532 (2013)

  26. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fund. 1(3), 187–191 (1962). https://doi.org/10.1021/i160003a005

    Article  CAS  Google Scholar 

  27. H.C. Brinkman, The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20(4), 571–571 (1952). https://doi.org/10.1063/1.1700493

    Article  ADS  CAS  Google Scholar 

  28. M. Sammouda, K. Gueraoui, M. Driouich, A. Ghouli, A. Dhiri, Double diffusive natural convection in non-darcy porous media with non-uniform porosity. Int. Rev. Model. Simul. 7(6), 1021–1030 (2013).

    Google Scholar 

  29. E. Abu-Nada, Z. Masoud, H.F. Oztop, A. Campo, Effect of nanofluid variable properties on natural convection in enclosures. Int. J. Therm. Sci. 49(3), 479–491 (2010). https://doi.org/10.1016/j.ijthermalsci.2009.09.002

    Article  CAS  Google Scholar 

  30. G.D.V. Davis, I.P. Jones, Natural convection in a square cavity: a comparison exercise. Int. J. Numer. Methods Fluids. 3(3), 227–248 (1983). https://doi.org/10.1002/fld.1650030304

    Article  ADS  Google Scholar 

  31. G. Barakos, E. Mitsoulis, D.O. Assimacopoulos, Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions. Int. J. Numer. Methods Fluids. 18(7), 695–719 (1994). https://doi.org/10.1002/fld.1650180705

    Article  ADS  Google Scholar 

  32. T. Fusegi, J.M. Hyun, K. Kuwahara, B. Farouk, A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. Int. J. Heat Mass Transf. 34(6), 1543–1557 (1991). https://doi.org/10.1016/0017-9310(91)90295-P

    Article  Google Scholar 

  33. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46(19), 3639–3653 (2003). https://doi.org/10.1016/S0017-9310(03)00156-X

    Article  CAS  Google Scholar 

  34. R.J. Krane, Some detailed field measurements for a natural convection flow in a vertical square enclosure. Proc. First ASME-JSME Therm. Eng. Joint Conf. 1, 323–329 (1983)

    Google Scholar 

  35. Y. Foukhari, M. Sammouda, M. Driouich, S. Belhouideg, Nanoparticles shape effect on heat transfer by natural convection of nanofluid in a vertical porous cylindrical enclosure subjected to a heat flux. Int. Conf. Partial Diff. Equ. Appl. Model. Simul. 437–445 (2023). https://doi.org/10.1007/978-3-031-12416-7_37

  36. Y. Foukhari, M. Sammouda, M. Driouich, K. Gueraoui, Heat transfer by natural convection in an annular space partially porous layered and saturated by a nanofluid. AIP Conf. Proc. 2761(1), 040021 (2023)

    Article  Google Scholar 

  37. K. Venkatadri, Visualization of thermo-magnetic natural convective heat flow in a square enclosure partially filled with a porous medium using Bejan heatlines and Hooman energy flux vectors: hybrid fuel cell simulation. Energy Sci. Eng. 224, 211591 (2023)

    CAS  Google Scholar 

  38. R. Biswas, M.S. Hossain, R. Islam, S.F. Ahmmed, S.R. Mishra, M. Afikuzzaman, Computational treatment of MHD Maxwell nanofluid flow across a stretching sheet considering higher-order chemical reaction and thermal radiation. J. Comput. Appl. Math. 4, 100048 (2022). https://doi.org/10.1016/j.jcmds.2022.100048

    Article  Google Scholar 

  39. K. Venkatadri, O.A. Beg, P. Rajarajeswari, V.R. Prasad, Numerical simulation of thermal radiation influence on natural convection in a trapezoidal enclosure: heat flow visualization through energy flux vectors. Int. J. Mech. Sci. 171, 105391 (2020)

    Article  Google Scholar 

  40. K. Venkatadri, O. Anwar Bég, S. Kuharat, Magneto-convective flow through a porous enclosure with Hall current and thermal radiation effects: numerical study. Eur. Phys. J. Spec. Top. 231(13), 2555–2568 (2022)

    Article  CAS  Google Scholar 

  41. N. Vedavathi, K. Venkatadri, S. Fazuruddin, G.S.S. Raju, Natural convection flow in semi-trapezoidal porous enclosure filled with alumina–water nanofluid using Tiwari and Das’ nanofluid model. Eng. Trans. 70(4), 303–318 (2022)

    Google Scholar 

  42. M. Afikuzzaman, M. Ferdows, M.M. Alam, Unsteady MHD Casson fluid flow through a parallel plate with hall current. Proc. Eng. 105, 287–293 (2015)

    Article  Google Scholar 

  43. S.F. Ahmmed, R. Biswas, M. Afikuzzaman, Unsteady magnetohydrodynamic free convection flow of nanofluid through an exponentially accelerated inclined plate embedded in a porous medium with variable thermal conductivity in the presence of radiation. J. Nanofluids. 7(5), 891–901 (2018). https://doi.org/10.1166/jon.2018.1520

    Article  Google Scholar 

  44. M. Afikuzzaman, M. Ferdows, R.A. Quadir, M.M. Alam, MHD viscous incompressible Casson fluid flow with hall current. J. Adv. Res. Fluid Mech. Therm. Sci 60(2), 270–282 (2019)

    Google Scholar 

  45. K. Venkatadri, A. Shobha, C. Venkata Lakshmi, V. Ramachandra Prasad, B.M. Hidayathulla Khan, Influence of magnetic wire positions on free convection of \({\rm{Fe_{3}O_{4}}}\)-water nanofluid in a square enclosure utilizing with MAC Algorithm. J. Comput. Appl. Mech. 51(2), 323–331 (2020)

    Google Scholar 

  46. A.S. Rashed, T.A. Mahmoud, A.M. Wazwaz, Axisymmetric forced flow of nonhomogeneous nanofluid over heated permeable cylinders. Waves Random Complex Media. 1–29 (2022). https://doi.org/10.1080/17455030.2022.2053611

  47. A.S. Rashed, S. M. Mabrouk, A.M. Wazwaz, Performance of hybrid two-phase nanofluid neighboring to permeable plates exposed to elevated temperatures. Waves Random Complex Media. 1–25(2022). https://doi.org/10.1080/17455030.2022.2038811

  48. M. Afikuzzaman, R. Biswas, M. Mondal, S. Ahmmed, MHD free convection and heat transfer flow through a vertical porous plate in the presence of chemical reaction. Front. Heat Mass Transf. 11, 11 (2018). https://doi.org/10.5098/hmt.11.13

    Article  CAS  Google Scholar 

  49. A.K. Abu-Nab, M.I. Elgammal, A.F. Abu-Bakr, Bubble growth in generalized-Newtonian fluid at Low-Mach number under influence of magnetic field. J. Thermophys. Heat Transf. 36(3), 485–491 (2022)

    Article  CAS  Google Scholar 

  50. A.F. Abu-Bakr, T. Kanagawa, A.K. Abu-Nab, Analysis of doublet bubble dynamics near a rigid wall in ferroparticle nanofluids. Case Stud. Therm. Eng. 34, 102060 (2022). https://doi.org/10.1016/j.csite.2022.102060

    Article  Google Scholar 

  51. A.K. Abu-Nab, A.F. Abu-Bakr, Effect of bubble–bubble interaction in Cu-\({\rm{Al_{2}O_{3}}}\)/\({\rm{H_{2}O}}\) hybrid nanofluids during multibubble growth process. Case Stud. Therm. Eng. 33, 101973 (2022)

    Article  Google Scholar 

  52. A.K. Abu-Nab, M.H. Omran, A.F. Abu-Bakr, Theoretical analysis of pressure relaxation time in N-dimensional thermally-limited bubble dynamics in \({\rm{Fe_{3}O_{4}}}\)/water nanofluids. J. Nanofluids. 11(3), 410–417 (2022)

    Article  Google Scholar 

  53. G.A. Shalaby, A.F. Abu-Bakr, Growth of N-dimensional spherical bubble within viscous, superheated liquid: analytical solution. Therm. Sci. 25, 504–514 (2021)

    Article  Google Scholar 

  54. A.K. Abu-Nab, A.F. Abu-Bakr, Effect of heat transfer on the growing bubble with the nanoparticles/water nanofluids in turbulent flow. Math. Model. Eng. 8,(1), 95-102(2021). https://doi.org/10.18280/mmep.080112

  55. K.D. Singh, R. Kumar, Fluctuating heat and mass transfer on unsteady MHD free convection flow of radiating and reacting fluid past a vertical porous plate in slip-flow regime. J. Appl. Fluid Mech. 4(4) 101–106 (2012). https://doi.org/10.36884/jafm.4.04.11952

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youness Foukhari.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foukhari, Y., Sammouda, M. & Driouich, M. Heat transfer enhancement by natural convection in a partially porous annular space between two coaxial cylinders saturated by Cu–water nanofluid. Eur. Phys. J. Plus 139, 253 (2024). https://doi.org/10.1140/epjp/s13360-024-04988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04988-5

Navigation