Skip to main content
Log in

pH-dependent biosynthesis of copper oxide nanoparticles using Galphimia glauca for their cytocompatibility evaluation

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles possess a high absorption coefficient and are non-toxic to animal cells. Biological agents inhabit many compounds that can be explored for the synthesis of monodispersed and non-toxic copper oxide nanoparticles. This is the most important advantage of biological syntheses over physical and chemical methods. In the present work, copper oxide nanoparticles have been synthesized with a simple and green technique by using an aqueous extract of mixed leaf and flowers of Galphimia glauca. The nanoparticles were synthesized at 80 °C, with a 15 mM Copper sulfate solution and at varying pH range (2, 4, inherent, i.e. 5.3, 8, 10, 12). The particle size of the nanoparticles was confirmed to be 5-10 nm using TEM and XRD at pH 12. The functional groups on the surface of the nanoparticles were characterized using FTIR. Moreover, GCMS analysis of the aqueous extracts showed that different flavonoids were responsible for the biosynthesis of copper oxide nanoparticles. The cytotoxicity assays were also determined using MRC-5 and HeLa cell lines for copper oxide nanoparticles and was found that the nanoparticles are non-toxic to the normal cells and are relatively toxic to cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4:571–576. https://doi.org/10.1007/s13204-013-0233-x

    Article  CAS  Google Scholar 

  • Banerjee S, Chakravorty D (2000) Optical absorption by nanoparticles of Cu2O. Europhys Lett 52:468–473. https://doi.org/10.1209/epl/i2000-00461-5

    Article  CAS  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583. https://doi.org/10.1021/bp0501423

    Article  CAS  Google Scholar 

  • Cuevas R, Durán N, Diez MC, Tortella GR, Rubila O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum a native white-rot fungus from chilean forests. J Nanomater 6:1–7. https://doi.org/10.1155/2015/789089

    Article  CAS  Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. https://doi.org/10.1021/cr030027b

    Article  CAS  Google Scholar 

  • Das SK, Bhowal J, Das AR, Guha AK (2006) Adsorption behavior of rhodamine B on Rhizopus oryzae biomass. Langmuir 22:7265–7272

    Article  CAS  Google Scholar 

  • Devi GK, Kumar KS, Parthiban R, Kalishwaralal K (2017) An insight study on HPTLC fingerprinting of Mukia maderaspatna: mechanism of bioactive constituents in metal nanoparticle synthesis and its activity against human pathogens. Microb Pathog 102:120–132. https://doi.org/10.1016/j.micpath.2016.11.026

    Article  CAS  Google Scholar 

  • Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452. https://doi.org/10.1021/cm9708269

    Article  CAS  Google Scholar 

  • Díaz J (1976) Uso de plantas medicinales de México, 1st edn. Instituto Mexicano para el Estudio de las Plantas Medicinales, Mexico, p 329

    Google Scholar 

  • Gawande MB, Branco PS, Parghi K, Shrikhande JJ, Pandey RK, Ghumman CA, Bundaleski N, Teodoro O, Jayaram RV (2011) Synthesis and characterization of versatile MgO–ZrO2 mixed metal oxide nanoparticles and their applications. Catal Sci Technol 1:1653–1664. https://doi.org/10.1039/C1CY00259G

    Article  CAS  Google Scholar 

  • Gentry ST, Fredericks SJ, Krchnavek R (2009) Controlled particle growth of silver sols through the use of hydroquinone as a selective reducing agent. Langmuir 25:2613–2621. https://doi.org/10.1021/la803680h

    Article  CAS  Google Scholar 

  • Guajardo-Pacheco M, Morales-Sánchez J, González-Hernández J, Ruiz F (2010) Synthesis of copper nanoparticles using soybeans as a chelant agent. Mater Lett 64:1361–1364. https://doi.org/10.1016/j.matlet.2010.03.029

    Article  CAS  Google Scholar 

  • Halawa MI, Wu F, Nsabimana A, Lou B, Xu G (2018) Inositol directed facile “green” synthesis of fluorescent gold nanoclusters as selective and sensitive detecting probes of ferric ions. Sens Actuators B Chem 257:980–987. https://doi.org/10.1016/j.snb.2017.11.046

    Article  CAS  Google Scholar 

  • Haldorai Y, Shim JJ (2014) Facile synthesis of CuO nanospindles from a 3D coordination complex and its application to nanofluids. Mater Lett 116:5–8. https://doi.org/10.1016/j.matlet.2013.10.094

    Article  CAS  Google Scholar 

  • Han KN, Kim NS (2009) Challenges and opportunities in direct write technology using nano-metal particles. KONA Powder Part J 27:73–83. https://doi.org/10.14356/kona.2009009

    Article  CAS  Google Scholar 

  • Harne S, Sharma A, Dhaygude M, Joglekar S, Kodam K, Hudlikar M (2012) Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B 95:284–288. https://doi.org/10.1016/j.colsurfb.2012.03.005

    Article  CAS  Google Scholar 

  • Honary S, Barabadi H, Fathabad EG, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium wakasmanii. Digest J Nanomater Biostruct 7:999–1005

    Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406

    CAS  Google Scholar 

  • Jeong S, Song HC, Lee WW, Lee SS, Choi Y, Son W, Kim ED, Paik CH, Oh SH, Ryu B (2011) Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate. Langmuir 27:3144–3149. https://doi.org/10.1021/la104136w

    Article  CAS  Google Scholar 

  • Jiang B, Yin H, Jiang T, Jiang Y, Feng H, Chen K, Zhou W, Wada Y (2006) Hydrothermal synthesis of rutile TiO2 nanoparticles using hydroxyl and carboxyl group-containing organics as modifiers. Mater Chem Phys 98:231–235. https://doi.org/10.1016/j.matchemphys.2005.09.044

    Article  CAS  Google Scholar 

  • Jiang D, Burrows AD, Edler KJ (2011) Size-controlled synthesis of MIL-101 (Cr) nanoparticles with enhanced selectivity for CO2 over N2. CrystEngComm 13:6916–6919. https://doi.org/10.1039/C1CE06274C

    Article  CAS  Google Scholar 

  • Jimenez-Ruiz A et al (2015) Nonfunctionalized gold nanoparticles: synthetic routes and synthesis condition dependence. Chem Eur J 21:9596–9609

    Article  CAS  Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Adv Mater 12:407–409. https://doi.org/10.1002/(SICI)1521-4095

    Article  CAS  Google Scholar 

  • Khan A, Rashid A, Younas R, Chong R (2016) A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett 6:21–26. https://doi.org/10.1007/s40089-015-0163-6

    Article  CAS  Google Scholar 

  • Khanehzaei H, Ahmad MB, Shameli K, Ajdari Z (2014) Synthesis and characterization of Cu@Cu2O core shell nanoparticles prepared in seaweed Kappaphycus alvarezii media. Int J Electrochem Sci 9:8189–8198

    Google Scholar 

  • Kulkarni V, Kulkarni P (2013) Green synthesis of copper nanoparticles using Ocimum sanctum leaf extract. Chemi J 1:1–4

    Google Scholar 

  • Küünal S, Rauwel P, Rauwel E (2018) Plant extract mediated synthesis of nanoparticles. In: Barhoum A, Makhlouf ASH (eds) Emerging applications of nanoparticles and architectural nanostructures, 1st edn, Cambridge, pp 411–446

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. https://doi.org/10.1021/cr068445e

    Article  CAS  Google Scholar 

  • Lee H, Lee G, Jang N, Yun J, Song J, Kim B (2011a) Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1:371–374

    CAS  Google Scholar 

  • Lee Y, Lee SH, Kim JS, Maruyama A, Chen X, Park TG (2011b) Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J Control Release 155:3–10. https://doi.org/10.1016/j.jconrel.2010.09.009

    Article  CAS  Google Scholar 

  • Li J, Wu J, Zhang X, Liu Y, Zhou D, Sun H, Zhang H, Yang B (2011) Controllable synthesis of stable urchin-like gold nanoparticles using hydroquinone to tune the reactivity of gold chloride. J Phys Chem C 115:3630–3637. https://doi.org/10.1021/jp1119074

    Article  CAS  Google Scholar 

  • Lisiecki I, Pileni MP (1993) Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 115:3887–3896

    Article  CAS  Google Scholar 

  • Lisiecki I, Pileni MP (1995) Copper metallic particles synthesized “in situ” in reverse micelles: influence of various parameters on the size of the particles. J Phys Chem 99:5077–5082. https://doi.org/10.1021/j100014a030

    Article  CAS  Google Scholar 

  • Luo F, Yang D, Chen Z, Megharaj M, Naidu R (2016) Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis. Sci Total Environ 562:526–532. https://doi.org/10.1016/j.scitotenv.2016.04.060

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK, Anna KK (2017a) Tyrosine assisted size controlled synthesis of silver nanoparticles and their catalytic, in vitro cytotoxicity evaluation. Environ Toxicol Pharmacol 51:23–29. https://doi.org/10.1016/j.etap.2017.02.020

    Article  CAS  Google Scholar 

  • Maddinedi SB, Mandal BK, Anna KK (2017b) Environment friendly approach for size controllable synthesis of biocompatible Silver nanoparticles using diastase. Environ Toxicol Pharmacol 49:131–136. https://doi.org/10.1016/j.etap.2016.11.019

    Article  CAS  Google Scholar 

  • Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promarak V, Seraphin S (2008) Indium oxide (In2O3) nanoparticles using Aloe vera plant extract synthesis and optical properties. J Optoelectron Adv Mater 10:161–165

    Google Scholar 

  • Majumder DR (2012) Bioremediation: copper nanoparticles from electronic-waste. Int J Eng Sci Technol 4

  • Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819. https://doi.org/10.1021/jp066539m

    Article  CAS  Google Scholar 

  • Oliveira MM, Ugarte D, Zanchet D, Zarbin AJG (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 292:429–435. https://doi.org/10.1016/j.jcis.2005.05.068

    Article  CAS  Google Scholar 

  • Oza G, Ravichandran M, Merupo VI, Shinde S, Mewada A, Tapia-Ramirez JT, Velumani S, Sharon M, Sharon M (2016) Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging. Sci. Rep 6:21286–21295. https://doi.org/10.1038/srep21286

    Article  CAS  Google Scholar 

  • Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanoparticle Res 6:411–414. https://doi.org/10.1007/s11051-004-6575-2

    Article  CAS  Google Scholar 

  • Pérez MA, Moiraghi R, Coronado EA, Macagno VA (2008) Hydroquinone synthesis of silver nanoparticles: a simple model reaction to understand the factors that determine their nucleation and growth. Cryst Growth Des 8:1377–1383. https://doi.org/10.1021/cg7009644

    Article  CAS  Google Scholar 

  • Polte J, Ahner TT, Delissen F, Sokolov S, Emmerling F, Thünemann AF, Kraehnert R (2010) Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J Am Chem Soc 132:1296–1301. https://doi.org/10.1021/ja906506j

    Article  CAS  Google Scholar 

  • Ramanathan R, Bhargava SK, Bansal V (2011) Biological Synthesis of Copper/Copper Oxide Nanoparticles. In: Chemeca 2011-”Engineering A Better World”, Sydney, Australia, 18–21 September; Rose Amal; Engineers Australia: Sydney, Australia. ISBN:9780858259676

  • Sarkar S, Chatterjee N, Roy M, Pal R, Sarkar S, Sen AK (2014) Nanodomain cubic cuprous oxide as reusable catalyst in one-pot synthesis of 3-Alkyl/Aryl-3-(Pyrrole-2-yl/Indole-3-yl)-2-Phenyl-2,3- Dihydro-Isoindolinones in aqueous medium. RSC Adv 4:7024–7029. https://doi.org/10.1039/C3RA46168H

    Article  CAS  Google Scholar 

  • Shafagh Maryam, Rahmani Fatemeh, Delirezh Norouz (2015) CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53. Iran J Basic Med Sci 18:993–1000

    Google Scholar 

  • Sharma A, Dutta RK (2015) Studies on the drastic improvement of photocatalytic degradation of acid orange-74 dye by TPPO capped CuO nanoparticles in tandem with suitable electron capturing agents. RSC Adv 5:43815–43823

    Article  CAS  Google Scholar 

  • Shi AC, Masel RI (1989) The effects of gas adsorption on particle shapes in supported platinum catalysts. J Catal 120:421–431. https://doi.org/10.1016/0021-9517(89)90282-0

    Article  CAS  Google Scholar 

  • Sirajuddin MA, Torriero AA, Nafady A, Lee CY, Bond AM, O’Mullane AP, Bhargava SK (2010) The formation of gold nanoparticles using hydroquinone as a reducing agent through a localized pH change upon addition of NaOH to a solution of HAuCl4. Colloids Surf A 370:35–41. https://doi.org/10.1016/j.colsurfa.2010.08.041

    Article  CAS  Google Scholar 

  • Sneha K, Sathishkumar M, Kim S, Yun Y (2010) Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Process Biochem 45:1450–1458

    Article  CAS  Google Scholar 

  • Subhankari I, Nayak P (2013a) Antimicrobial activity of copper nanoparticles synthesized by ginger (Zingiber officinale) extract. World J Nano Sci Technol 2:10–13

    Google Scholar 

  • Subhankari I, Nayak P (2013b) Synthesis of copper nanoparticles using Syzygium aromaticum (cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2:14–17

    Google Scholar 

  • Tamuly C, Saikia I, Hazarika M, Das M (2014) Reduction of aromatic nitro compounds catalyzed by biogenic CuO nanoparticles. RSC Adv 2014(4):53229. https://doi.org/10.1039/c4ra10397a

    Article  Google Scholar 

  • Tortoriello J, Ortega A, Herrera-Ruíz M, Trujillo J, Reyes-Vázquez C (1998) Galphimine-B modifies electrical activity of ventral tegmental area neurons in rats. Planta Med 64:309–313. https://doi.org/10.1055/s-2006-957440

    Article  CAS  Google Scholar 

  • Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed 8:4467–4478. https://doi.org/10.2147/IJN.S50837

    Article  CAS  Google Scholar 

  • Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. J Met 62:100–102. https://doi.org/10.1007/s11837-010-0171-y

    Article  CAS  Google Scholar 

  • Vidhu VK, Aromal SA, Philip D (2011) Green synthesis of silver nanoparticles using Macrotyloma uniflorum. Spectrochim Acta A 83:392–397. https://doi.org/10.1016/j.saa.2011.08.051

    Article  CAS  Google Scholar 

  • Wang W, Sun C, Mao L, Ma P, Liu F, Yang J, Gao Y (2016) The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol 56:21–38. https://doi.org/10.1016/j.tifs.2016.07.004

    Article  CAS  Google Scholar 

  • Wang C, Wang H, Matios E, Xiaofei Hu, Li Weiyang (2018) A chemically engineered porous copper matrix with cylindrical core-shell skeleton as a stable host for metallic sodium anodes. Adv Funct Mater 28(30):1802282. https://doi.org/10.1002/adfm.201802282

    Article  CAS  Google Scholar 

  • Wang H, Matios E, Wang C, Luo L, Lu X, Hu X, Li W (2019) Rapid and scalable synthesis of cuprous halide/derived copper nano/architecture for selective electrochemical reduction of carbon dioxide. Nano Lett 19:3925–3932

    Article  CAS  Google Scholar 

  • Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C 111:16858–16865. https://doi.org/10.1021/jp0752668

    Article  CAS  Google Scholar 

  • Wang Y, Biradar AV, Wang G, Sharma KK, Duncan CT, Rangan S, Asefa T (2010) Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties. Chem Eur J 16:10735–10743. https://doi.org/10.1002/chem.201000354

    Article  CAS  Google Scholar 

  • Yang Yuanyuan, Jin Peng, Zhang Xingcai, Ravichandran Nagaiya, Ying Hao, Chenghuan Yu, Ying Huazhong, Yongquan Xu, Yin Junfeng, Wang Kai, Ming Wu, Qizhen Du (2017) New epigallocatechin gallate (EGCG) nanocomplexes Co-assembled with 3-mercapto-1-hexanol and β-lactoglobulin for improvement of antitumor activity. J Biomed Nanotechnol 13:805–814

    Article  CAS  Google Scholar 

  • Yao WT, Yu SH, Zhou Y, Jiang J, Wu QS, Zhang L, Jiang J (2005) Formation of uniform CuO nanorods by spontaneous aggregation: selective synthesis of CuO, Cu2O, and Cu nanoparticles by a solid–liquid phase arc discharge process. J Phys Chem B 109:14011–14016. https://doi.org/10.1021/jp0517605

    Article  CAS  Google Scholar 

  • Zhang J, Liu J, Peng Q, Wang X, Li Y (2006) Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater 18:867–871. https://doi.org/10.1021/cm052256f

    Article  CAS  Google Scholar 

  • Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494. https://doi.org/10.1016/j.chemosphere.2010.10.023

    Article  CAS  Google Scholar 

  • Zhang Xingcai, Parekh Gaurav, Guo Baoling, Huang Xing, Dong Yuqing, Han Wen, Chen Xing, Xiao Gao (2019) Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications. Future Drug Discov 1:1

    Article  Google Scholar 

  • Zhu HT, Zhang CY, Yin YS (2004) Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation. J Cryst Growth 270:722–728

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (Goldie Oza-Catedra Conacyt) is highly obliged for the kind support provided by Conacyt under the Catedras Project 746. A special thanks to Dr. Josefina Aldeco for the equipment (FTIR) provided by her.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Sharma.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oza, G., Calzadilla-Avila, A.I., Reyes-Calderón, A. et al. pH-dependent biosynthesis of copper oxide nanoparticles using Galphimia glauca for their cytocompatibility evaluation. Appl Nanosci 10, 541–550 (2020). https://doi.org/10.1007/s13204-019-01159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01159-2

Keywords

Navigation