Skip to main content
Log in

Introducing Galois field polynomial addition in quantum-dot cellular automata

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The quantum-dot cellular automata, which provides a novel nano-computation paradigm, has got wide acceptance owing to its ultra-high operating speed, extremely low power dissipation with a considerable reduction in feature size. The QCA architectures are emerging as a potential alternative to the conventional complementary metal oxide semiconductor technology. This work mitigates the gap between QCA and coding theory, particularly finite field addition through a redesign-able, reproducible and scalable modular based approach. Primarily, a module to perform modulo-2 addition, namely M2A module is introduced. The notion of M2A module further results in a novel algorithm that generates an approach of QCA design of Galois field (GF)-based polynomial adders. The cost functions are calculated to estimate the operation of M2A-based polynomial adders, the proposed adders are compared with the conventional counterpart, and the best one is reported. The defect- and fault-tolerant behavior of GF(28) polynomial adder is also examined as a particular instance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

Download references

Acknowledgements

The authors are thankful to Prof. Debdatta Banerjee for her insightful comments in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiradeep Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, C., Panda, S., Mukhopadhyay, A.K. et al. Introducing Galois field polynomial addition in quantum-dot cellular automata. Appl Nanosci 9, 2127–2146 (2019). https://doi.org/10.1007/s13204-019-01045-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01045-x

Keywords

Navigation