Skip to main content
Log in

Functional nanocomposites for 3D printing of stretchable and wearable sensors

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This paper presents highly flexible strain sensors fabricated by extrusion-based 3D printing of electrically conductive nanocomposites consisting of multi-walled carbon nanotube (MWNT)/polydimethylsiloxane (PDMS). The effects of printing parameters and nanocomposite formulation on the piezoresistive behavior of the 3D-printed sensors are investigated. Experimental results demonstrate that the 3D printing-induced alignment of MWNTs results in the enhancement of piezoresistive sensing function of the nanocomposites. Detailed analyses are performed using the optimized sensors to characterize their sensing performance, including load rate dependency, repeatability under long-term cyclic loads, and relaxation behavior. The 3D-printed strain sensors demonstrate high flexibility, stretching to 146% strain before fracture, and exhibit a linear piezoresistive response up to 70% strain with a gauge factor of 12.15. The distribution of nanotubes in the polymer and the piezoresistive mechanism of the material are explored by in situ micro-mechanical testing under a scanning electron microscope (SEM). The developed sensors are attached on gloves to monitor the motion of a human hand, demonstrating their application wearable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abshirini M, Charara M, Liu Y, Saha M, Altan MC (2018) 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites. Adv Eng Mater 20:1800425

    Google Scholar 

  • Agarwala S, Goh GL, Le Dinh T-S, An J, Peh ZK, Yeong WY, Kim Y-J (2018) Wearable bandage-based strain sensor for home healthcare: combining 3D aerosol jet printing and laser sintering. ACS Sens 4:218–226

    Google Scholar 

  • Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8:5154–5163

    CAS  Google Scholar 

  • Amjadi M, Kyung KU, Park I, Sitti M (2016) Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv Funct Mater 26:1678–1698

    CAS  Google Scholar 

  • Cai L, Song L, Luan P, Zhang Q, Zhang N, Gao Q, Zhao D, Zhang X, Tu M, Yang F (2013) Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep 3:3048

    Google Scholar 

  • Cao H, Thakar SK, Oseng ML, Nguyen CM, Jebali C, Kouki AB, Chiao J-C (2015) Development and characterization of a novel interdigitated capacitive strain sensor for structural health monitoring. IEEE Sens J 15:6542–6548

    CAS  Google Scholar 

  • Charara M, Abshirini M, Saha MC, Altan MC, Liu Y (2019a) Highly sensitive compression sensors using three-dimensional printed polydimethylsiloxane/carbon nanotube nanocomposites. J Intell Mater Syst Struct 18:1045389X19835953

    Google Scholar 

  • Charara M, Luo W, Saha MC, Liu Y (2019b) Investigation of lightweight and flexible carbon nanofiber/poly dimethylsiloxane nanocomposite sponge for piezoresistive sensor application. Adv Eng Mater 1801068. https://doi.org/10.1002/adem.201801068

    Google Scholar 

  • Chen S, Wei Y, Wei S, Lin Y, Liu L (2016) Ultrasensitive cracking-assisted strain sensors based on silver nanowires/graphene hybrid particles. ACS Appl Mater Interfaces 8:25563–25570

    CAS  Google Scholar 

  • Choi DY, Kim MH, Oh YS, Jung S-H, Jung JH, Sung HJ, Lee HW, Lee HM (2017) Highly stretchable, hysteresis-free ionic liquid-based strain sensor for precise human motion monitoring. ACS Appl Mater Interfaces 9:1770–1780

    CAS  Google Scholar 

  • Chowdhury S, Olima M, Liu Y, Saha M, Bergman J, Robison T (2016) Poly dimethylsiloxane/carbon nanofiber nanocomposites: fabrication and characterization of electrical and thermal properties. Int J Smart Nano Mater 7:236–247

    Google Scholar 

  • Chowdhury SA, Saha MC, Patterson S, Robison T, Liu Y (2018) Highly conductive polydimethylsiloxane/carbon nanofiber composites for flexible sensor applications. Adv Mater Technol 4(1):1800398

    Google Scholar 

  • Cohen DJ, Mitra D, Peterson K, Maharbiz MM (2012) A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano letters 12:1821–1825

    CAS  Google Scholar 

  • Compton BG, Lewis JA (2014) 3D-printing of lightweight cellular composites. Adv Mater 26:5930–5935

    CAS  Google Scholar 

  • Costa P, Silvia C, Viana J, Mendez SL (2014) Extruded thermoplastic elastomers styrene–butadiene–styrene/carbon nanotubes composites for strain sensor applications. Compos Part B: Eng 57:242–249

    CAS  Google Scholar 

  • Fallahi A, Bahramzadeh Y, Tabatabaie S, Shahinpoor M (2017) A novel multifunctional soft robotic transducer made with poly (ethylene-co-methacrylic acid) ionomer metal nanocomposite. Int J Intell Robot Appl 1:143–156

    Google Scholar 

  • Farkash M, Brandon D (1994) Whisker alignment by slip extrusion. Mater Sci Eng, A 177:269–275

    CAS  Google Scholar 

  • Gnanasekaran K, Heijmans T, Van Bennekom S, Woldhuis H, Wijnia S, de With G, Friedrich H (2017) 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl Mater Today 9:21–28

    Google Scholar 

  • Goh GL, Agarwala S, Tan YJ, Yeong WY (2018a) A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sens Actuators B: Chem 260:227–235

    CAS  Google Scholar 

  • Goh GL, Agarwala S, Yeong WY (2018b) Directed and on-demand alignment of carbon nanotube: a review toward 3D. Print Electr Adv Mater Interfaces 6:1801318. https://doi.org/10.1002/admi.201801318

    Article  Google Scholar 

  • Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC (2017) 3D printed stretchable tactile sensors. Adv Mater 29:1701218

    Google Scholar 

  • Hinton TJ, Hudson A, Pusch K, Lee A, Feinberg AW (2016) 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomater Sci Eng 2:1781–1786

    CAS  Google Scholar 

  • Ho DH, Sun Q, Kim SY, Han JT, Kim DH, Cho JH (2016) Stretchable and multimodal all graphene electronic skin. Adv Mater 28:2601–2608

    CAS  Google Scholar 

  • Hoang PT, Salazar N, Porkka TN, Joshi K, Liu T, Dickens TJ, Yu Z (2016) Engineering crack formation in carbon nanotube-silver nanoparticle composite films for sensitive and durable piezoresistive sensors. Nanoscale Res Lett 11:422

    Google Scholar 

  • Hong SY, Lee YH, Park H, Jin SW, Jeong YR, Yun J, You I, Zi G, Ha JS (2016) Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv Mater 28:930–935

    CAS  Google Scholar 

  • Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56:2929–2936

    CAS  Google Scholar 

  • Hwang HH, Zhu W, Victorine G, Lawrence N, Chen S (2018) 3D-printing of functional biomedical microdevices via light- and extrusion-based approaches. Small Methods 2:1700277

    Google Scholar 

  • Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN (2015) Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS Nano 9:4636–4648

    CAS  Google Scholar 

  • Kang I, Schulz MJ, Kim JH, Shanov V, Shi D (2006) A carbon nanotube strain sensor for structural health monitoring. Smart Mater Struct 15:737

    CAS  Google Scholar 

  • Kang D, Pikhitsa PV, Choi YW, Lee C, Shin SS, Piao L, Park B, Suh K-Y, T-i Kim, Choi M (2014) Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516:222

    CAS  Google Scholar 

  • Kim JT, Pyo J, Rho J, Ahn J-H, Je JH, Margaritondo G (2012) Three-dimensional writing of highly stretchable organic nanowires. ACS Macro Lett 1:375–379

    CAS  Google Scholar 

  • Kumar N, Jain PK, Tandon P, Pandey PM (2018) Additive manufacturing of flexible electrically conductive polymer composites via CNC-assisted fused layer modeling process. J Braz Soc Mech Sci Eng 40:175

    Google Scholar 

  • Kwok SW, Goh KHH, Tan ZD, Tan STM, Tjiu WW, Soh JY, Ng ZJG, Chan YZ, Hui HK, Goh KEJ (2017) Electrically conductive filament for 3D-printed circuits and sensors. Appl Mater Today 9:167–175

    Google Scholar 

  • Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3D printing of electronic sensors. PloS One 7:e49365

    CAS  Google Scholar 

  • Li Q, Li J, Tran D, Luo C, Gao Y, Yu C, Xuan F (2017) Engineering of carbon nanotube/polydimethylsiloxane nanocomposites with enhanced sensitivity for wearable motion sensors. J Mater Chem C 5:11092–11099

    CAS  Google Scholar 

  • Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788

    CAS  Google Scholar 

  • Liu Y, Rajadas A, Chattopadhyay A (2012) A biomimetic structural health monitoring approach using carbon nanotubes. Jom 64(7):802–807

    Google Scholar 

  • Liu Z, Qi D, Guo P, Liu Y, Zhu B, Yang H, Liu Y, Li B, Zhang C, Yu J (2015) Thickness-gradient films for high gauge factor stretchable strain sensors. Adv Mater 27:6230–6237

    CAS  Google Scholar 

  • Liu H, Huang W, Gao J, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Piezoresistive behavior of porous carbon nanotube-thermoplastic polyurethane conductive nanocomposites with ultrahigh compressibility. Appl Phys Lett 108:011904

    Google Scholar 

  • Lu N, Lu C, Yang S, Rogers J (2012) Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv Func Mater 22:4044–4050

    CAS  Google Scholar 

  • Luo W, Charara M, Saha MC, Liu Y (2018) Fabrication and characterization of porous CNF/PDMS nanocomposites for sensing applications. Appl Nanosci 1–9

  • Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano letters 13:2634–2639

    CAS  Google Scholar 

  • Martinez RV, Branch JL, Fish CR, Jin L, Shepherd RF, Nunes RM, Suo Z, Whitesides GM (2013) Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv Mater 25:205–212

    CAS  Google Scholar 

  • Michelis F, Bodelot L, Bonnassieux Y, Lebental B (2015) Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes. Carbon 95:1020–1026

    CAS  Google Scholar 

  • Obitayo W, Liu T (2012) A review: Carbon nanotube-based piezoresistive strain sensors. J Sens 2012:652438. https://doi.org/10.1155/2012/652438

    Article  Google Scholar 

  • Park JJ, Hyun WJ, Mun SC, Park YT, Park OO (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7:6317–6324. https://doi.org/10.1021/acsami.5b00695

    Article  CAS  Google Scholar 

  • Ryu S, Lee P, Chou JB, Xu R, Zhao R, Hart AJ, Kim S-G (2015) Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 9:5929–5936. https://doi.org/10.1021/acsnano.5b00599

    Article  CAS  Google Scholar 

  • Selvan NT, Eshwaran S, Das A, Stöckelhuber K, Wießner S, Pötschke P, Nando G, Chervanyov A, Heinrich G (2016) Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sens Actuators, A 239:102–113

    CAS  Google Scholar 

  • Shofner M, Lozano K, Rodríguez-Macías F, Barrera E (2003) Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89:3081–3090

    CAS  Google Scholar 

  • Truby RL, Wehner M, Grosskopf AK, Vogt DM, Uzel SG, Wood RJ, Lewis JA (2018) Soft somatosensitive actuators via embedded 3D printing. Adv Mater 30:1706383

    Google Scholar 

  • Trung TQ, Ramasundaram S, Lee N-E (2017) Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics. Nano Res 10:2021–2033

    CAS  Google Scholar 

  • Vatani M, Lu Y, Lee K-S, Kim H-C, Choi J-W (2013) Direct-write stretchable sensors using single-walled carbon nanotube/polymer matrix. J Electron Packag 135:011009

    Google Scholar 

  • Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B: Eng 110:442–458

    CAS  Google Scholar 

  • Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D printable graphene composite. Sci Rep 5:11181

    Google Scholar 

  • Wu S, Zhang J, Ladani RB, Ravindran AR, Mouritz AP, Kinloch AJ, Wang CH (2017) Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductors. ACS Appl Mater Interfaces 9:14207–14215

    CAS  Google Scholar 

  • Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296

    CAS  Google Scholar 

  • Yu WW, Zhang J, Wu JR, Wang XZ, Deng YH (2017) Incorporation of graphitic nano-filler and poly (lactic acid) in fused deposition modeling. J Appl Polym Sci 134:44703. https://doi.org/10.1002/app.44703

    Article  CAS  Google Scholar 

  • Zhang R, Deng H, Valenca R, Jin J, Fu Q, Bilotti E, Peijs T (2013) Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Compos Sci Technol 74:1–5

    CAS  Google Scholar 

  • Zhang S, Cai L, Li W, Miao J, Wang T, Yeom J, Sepúlveda N, Wang C (2017) Fully printed silver-nanoparticle-based strain gauges with record high sensitivity. Adv Electr Mater 3:1700067

    Google Scholar 

  • Zheng WJ, An N, Yang JH, Zhou J, Chen YM (2015) Tough Al-alginate/poly (N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS Appl Mater Interfaces 7:1758–1764

    CAS  Google Scholar 

  • Zheng Y, Li Y, Li Z, Wang Y, Dai K, Zheng G, Liu C, Shen C (2017) The effect of filler dimensionality on the electromechanical performance of polydimethylsiloxane based conductive nanocomposites for flexible strain sensors. Compos Sci Technol 139:64–73. https://doi.org/10.1016/j.compscitech.2016.12.014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingtao Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abshirini, M., Charara, M., Marashizadeh, P. et al. Functional nanocomposites for 3D printing of stretchable and wearable sensors. Appl Nanosci 9, 2071–2083 (2019). https://doi.org/10.1007/s13204-019-01032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01032-2

Keywords

Navigation