Skip to main content
Log in

One-pot synthesis of multifunctional ZnO nanomaterials: study of superhydrophobicity and UV photosensing property

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

ZnO nanomaterials are synthesized using one-pot synthesis method. Equimolar solution of Zinc Nitrate hexahydrate (Zn(NO3)2.6H2O) and Hexamethylenetetramine (C6H12N4) is used as a precursor for ZnO formation. Different nanostructures of ZnO are achieved by controlling the pH of the growth solution in the range 2–12 (acidic to alkali). ZnO nanostructures are evaluated for hydrophobic property using static contact angle measurement setup and UV photosensing activity. Surface morphology, structural properties and compositional analysis of ZnO nanostructures are examined by field emission scanning electron microscope (FE-SEM), energy dispersive X-ray analysis (EDX), high-resolution transmission electron microscope (FEG-TEM) and X-ray diffraction (XRD) measurements. Existence of ZnO wurtzite structure is confirmed from XRD study and is analyzed by Rietveld refinement method. Nanomaterials are characterized using Raman spectroscopy which confirms highest oxygen deficiency in ZnO nanorods. The material shows remarkable superhydrophobic and UV photosensing property and hence the name multifunctional. Among all morphologies grown at different pH values, ZnO nanorods show superhydrophobic nature with contact angle more than 170°. Total surface energy value of ZnO nanostructures is calculated using Wendt two-component theory. Different ZnO nanostructures (with variation of pH value) are used to study UV photosensing property. Responsivity and photocurrent show a strong dependence on the morphology of ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agnihotri S, Bajaj G, Mukherjee S, Mukherjee S (2015) Arginine assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 7:7415–7429

    CAS  Google Scholar 

  • Cassie ABD, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    CAS  Google Scholar 

  • Chang WC, Cheng YY, Yu WC, Yao YC, Lee CH, Ko HH (2012) Enhancing performance of ZnO dye-sensitized solar cells by incorporation of multiwalled carbon nanotubes. Nanoscale Res Lett 7:166

    Google Scholar 

  • Chen J, Min F, Liu L (2019) The interactions between fine particles of coal and kaolinite in aqueous, insights from experiments and molecular simulations. Appl Surf Sci 467–468:12–21

    Google Scholar 

  • Chithra MJ, Sathya M, Pushpanathan K (2015) Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method 28:394–404

  • Choi MY, Choi D, Jin MJ, Kim I, Kim SH, Choi JY, Lee SY, Kim JM, Kim SW (2009) Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Adv Mater 21(21):2185–2189

    CAS  Google Scholar 

  • Dai W, Pan X, Chen C, Chen S, Chen W, Zhang H, Ye Z (2014) Enhanced UV detection performance using a Cu-doped ZnO nanorod array film. RSC Adv 4:31969–31972

    CAS  Google Scholar 

  • Demianets LN, Kostomarov DV, Kuz’mina IP, Pushko SV (2002) Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr Rep 47:S86– S98

    CAS  Google Scholar 

  • Devaraj R, Karthikeyan K, Jeyasubramanian K (2013) Synthesis and properties of ZnO nanorods by modified pechini process. Appl Nanosci 3:37–40

    CAS  Google Scholar 

  • Dimapilis EAS, Hsu CS, Mendoza RMO, Lu MC (2018) Zinc oxide nanoparticles for water disinfection. Sustain Env Res 28:47–56

    CAS  Google Scholar 

  • Djurišić AB, Chen X, Leung YH, Man CN (2012) Alan, ZnO nanostructures: growth, properties and applications. J Mater Chem 22:6526–6535

    Google Scholar 

  • Doan VY, Vuong PH, Lan H, Tam PD (2016) Synthesis of ZnO nanorod for immunosensor application. Vietnam J Chem 54(6):765–770

    Google Scholar 

  • Ghosh SP, Das KC, Tripathy N, Bose G, Kim DH, Lee TI, Myoung JM, Kar JP (2016) Ultraviolet photodetection characteristics of Zinc oxide thin films and nanostructures. IOP Conf Ser Mater Sci Eng 115:012035

    Google Scholar 

  • Khokhra R, Bharti B, Lee HN, Kumar R (2017) Visible and UV photo-detection in ZnO nanostructured thin films via simple tuning of solution method. Sci Rep 7:15032

    Google Scholar 

  • Khranovskyy V, Yakimova R (2012) Morphology engineering of ZnO nanostructures. Phys B 407:1533–1537

    CAS  Google Scholar 

  • Kim D, Kim W, Jeon S, Yong K (2017) Highly efficient UV-sensing properties of Sb-doped ZnO nanorod arrays synthesized by a facile, single-step hydrothermal reaction. RSC Adv 7:40539–40548

    CAS  Google Scholar 

  • Kumar M, Jeong H, Lee D (2019) UV photodetector with ZnO nanoflowers as an active layer and a network of Ag nanowires as transparent electrodes. Superlattices Microstruct 126:132–138

    CAS  Google Scholar 

  • Kundu S, Majumder R, Ghosh R, Pal Chowdhury M (2019) Superior positive relative humidity sensing properties of porous nanostructured Al:ZnO thin films deposited by jet-atomizer spray pyrolysis technique. J Mater Sci Mater Electron 2019:1–8

    Google Scholar 

  • Lee M, Kwak G, Yong K (2011) Wettability control of ZnO nanoparticles for universal applications. ACS Appl Mater Interfaces 3:3350–3356

    CAS  Google Scholar 

  • Li WJ, Shi EW, Zhong WZ, Yin ZW (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203:186–196

    CAS  Google Scholar 

  • Li S, Hu J, Li J, Tian J, Han Z, Zhou X, Chen Y (2011) Anisotropic wet etched silicon substrates for reoriented and selective growth of ZnO nanowires and enhanced hydrophobicity. Langmuir 27:6549–6553

    CAS  Google Scholar 

  • Li CP, Zhang J, Yu HM, Zhang LJ (2013) Raman and photoluminescence properties of ZnO Nanorods with wurtzite structure. Key Eng Mater 538:50–53

    Google Scholar 

  • Medina J, Bolaños H, Mosquera-Sanchez LP, Rodriguez-Paez JE (2018) Controlled synthesis of ZnO nanoparticles and evaluation of their toxicity in Mus musculus mice. Int Nano Lett 8:165–179

    CAS  Google Scholar 

  • Motevalizadeh L, Heidary Z, Abrishami ME (2014) Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods. Bull Mater Sci 37:397–405

    CAS  Google Scholar 

  • Mudunkotuwa IA, Rupasinghe T, Wu CM, Grassian VH (2012) Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28:396403

    Google Scholar 

  • Orlov A, Ulianova V, Zazerin A, Bogdan O, Pashkevich G, Yakymenko Y (2016) Active elements on a basis of ZnO nanorods for energy harvesting devices. Radioelectron Commun Syst 59:60–65

    Google Scholar 

  • Park JH, Park JH, Biswas P, Kwon DKH, Sun W, Baik HK, Myoung JM (2016) Adopting novel strategies in achieving high-performance single-layer network structured ZnO nanorods thin film transistors. ACS Appl Mater Interfaces 8:11564–11574

    CAS  Google Scholar 

  • Peng X, Wang W, Zeng Y, Pan X, Ye Z, Zeng Y (2018) Enhanced photoresponse of a high-performance self-powered UV photodetector based on ZnO nanorods and a novel electrolyte by the piezo-phototronic effect. R Soc Chem 8:33174–33179

    CAS  Google Scholar 

  • Prakash GV, Pradeesh K, Kumar A, Kumar R, Rao SV, Markham M, Baumberg J (2008) Morphological manipulation of the nonlinear optical response of ZnO thin films grown by thermal evaporation. Mater Lett 62:1183–1186

    CAS  Google Scholar 

  • Purwaningsih SY, Pratapa S, Triwikantoro, Darminto (2016) Nano-sized ZnO powders prepared by coprecipitation method with various pH. AIP Conf Proc 1725:020063

    Google Scholar 

  • Ramimoghadam D, Hussein M, Taufiq-Yap YH (2013) Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate. Chem Cent J 7:71

    Google Scholar 

  • Rodwihok C, Choopun S, Ruankham P, Gardchareon A, Phadungdhitidhada S, Wongratanaphisan D (2017) UV sensing properties of ZnO nanowires/nanorods. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2017.11.056

    Article  Google Scholar 

  • Sarahnaz S, Gujela OP, Afzulpurkar NV (2013) Fabrication of light emitting diode with ZnO nanorods on polymer coated silicon substrate. Int Conf Manipul Manuf Meas Nanoscale 2013:295–298

    Google Scholar 

  • Sarangi SN (2016) Controllable growth of ZnO nanorods via electrode position technique: towards UV photodetection. J Phys D Appl Phys 49:355103

    Google Scholar 

  • Sarkar S, Basak D (2015) Understanding of ultraviolet photoresponse properties of ZnO nanorods: effect of nanorod’s size and ambient. Sci Lett J 5:4

    Google Scholar 

  • Sasmal AK, Mondal C, Sinha AK, Gauri SS, Pal J, Aditya T, Ganguly M, Dey S, Pal T (2014) Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation. ACS Appl Mater Interfaces 6:22034–22043

    CAS  Google Scholar 

  • Schuster JM, Schvezov CE, Rosenberger MR (2015) Analysis of the results of surface free energy measurement of Ti6Al4V by different methods. Procedia Mater Sci 8:732–741

    CAS  Google Scholar 

  • Selvarajan E, Mohanasrinivasan V (2013) Biosynthesis and characterization of ZnO nanoparticles using lactobacillus plantarum vites 07. Mater Lett 112:180–182

    CAS  Google Scholar 

  • Shahabi S, Najafi F, Majdabadi A (2014) Effect of gamma irradiation on structural and biological properties of a PLGA-PEG-hydroxyapatite composite. Sci World J 2014:1–9

    Google Scholar 

  • Shaikh SK, Ganbavle VV, Inamdar SI, Rajpure KY (2016) Multifunctional zinc oxide thin films for high-performance UV photodetectors and nitrogen dioxide gas sensors. RSC Adv 6:25641–25650

    CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    CAS  Google Scholar 

  • Smeraldi J, Ganesh R, Hosseini T, Khatib L, Olson B, Rosso D (2017) Fate and toxicity of zinc oxide nanomaterial in municipal wastewaters. Water Environ Res 89:880–889

    CAS  Google Scholar 

  • Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D (2007) ZnO nanowire UV photodetectors with high internal gain. Nano Lett 7:1003–1009

    CAS  Google Scholar 

  • Sohn JI, Hong WK, Lee S, Lee S, Ku J, Park YJ, Hong J, Hwang S, Park KH, Warner JH, Cha S, Kim JM (2014) Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity. Sci Rep 4:5680

    CAS  Google Scholar 

  • Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M (2010) Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf A Physicochem Eng Aspects 364:72–81

    CAS  Google Scholar 

  • Sun B, Sirringhaus H (2005) Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett 12:2408–2413

    Google Scholar 

  • Sun ZP, Liu L, Zhang L, Jia DZ (2006) Rapid synthesis of ZnO nanorods by one-step, room-temperature, solid-state reaction and their gas-sensing properties. Nanotechnology 17(9):2266

    CAS  Google Scholar 

  • Tak M, Gupta V, Tomar M (2015) A highly efficient urea detection using flower-like zinc oxide nanostructures. Mater Sci Eng C 57:38–48

    CAS  Google Scholar 

  • Talam SA, Karumuri SRA, Gunnam NA (2012) Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles, ISRN Nanotechnol 2012:6

    Google Scholar 

  • Tan ST, Chen BJ, Sun XW, Fan WJ, Kwok HS, Zhang XH, Chua SJ (2005) Blue shift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J Appl Phys 98:013505

    Google Scholar 

  • Torchinsky I, Rosenman G (2009) Wettability modification of nanomaterials by low-energy electron flux. Nanoscale Res Lett 4:1209–1217

    CAS  Google Scholar 

  • Udom I, Ram MK, Stefanakos EK, Hepp AF, Goswami DY (2013) One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater Sci Semicond Process 16:2070–2083

    CAS  Google Scholar 

  • Vicente CMS, André PS, Ferreira RAS (2012) Simple measurement of surface free energy using a web cam. Rev Brasil Ensino Física 34:1–5

    Google Scholar 

  • Wahab R, Ansari S, Kim Y, Seo H, Kim G, Khang G, Shin HS (2007) Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater Res Bull 42:1640–1648

    CAS  Google Scholar 

  • Wang Z (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter 16:R829

    CAS  Google Scholar 

  • Wang B, Zhang Z, Chang K, Cui J, Rosenkranz A, Yu J, Lin CT, Chen G, Zang K, Luo J, Jiang N, Guo D (2018) New deformation-induced nanostructure in silicon. Nano Lett 18:4611–4617

    CAS  Google Scholar 

  • Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    CAS  Google Scholar 

  • Yin YT, Wu SH, Chen CH, Chen LY (2011) Fabrication of ZnO nanorods in one pot via solvothermal method. J Chin Chem Soc 58:749–755

    CAS  Google Scholar 

  • Yin Y, Sun Y, Yu M, Liu X, Yang B, Liu D, Liu S, Cao W, Ashfold MNR (2014) Controlling the hydrothermal growth and the properties of ZnO nanorod arrays by pre-treating the seed layer. RSC Adv 4:44452–44456

    CAS  Google Scholar 

  • Zanni E, Bruni E, Chandraiahgari CR, De Bellis G, Santangelo MG, Leone M, Bregnocchi A, Mancini P, Sarto MS, Uccelletti D (2017) Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: new perspectives for antibiodeteriorative approaches. J Nanobiotechnol 15:57

    Google Scholar 

  • Zhai T, Xie S, Zhao Y, Xiaofeng S, Lu X, Yu M, Xu M, Xiao F, Tong Y (2012) Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity. Cryst Eng Comm 14:1850–1855

    CAS  Google Scholar 

  • Zhang R, Yin PG, Wang N, Guo L (2009) Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci 11:865–869

    Google Scholar 

  • Zhang Z, Song Y, Huo F, Guo D (2012a) Nanoscale material removal mechanism of soft-brittle HgCdTe single crystals under nanogrinding by ultrafine diamond grits. Tribol Lett 46:95–100

    Google Scholar 

  • Zhang Z, Song Y, Xu C, Guo D (2012b) A novel model for undeformed nanometer chips of soft-brittle HgCdTe films induced by ultrafine diamond grits. Scr Mater 67:197–200

    CAS  Google Scholar 

  • Zhang Z, Huo F, Zhang X, Guo D (2012c) Fabrication and size prediction of crystalline nanoparticles of silicon induced by nanogrinding with ultrafine diamond grits. Scr Mater 67:657–660

    CAS  Google Scholar 

  • Zhang G, Wei L, Chen Y, Mei L, Jiao J (2013a) Field emission property of ZnO nanoneedle arrays with different morphology. Mater Lett 96:131–134

    CAS  Google Scholar 

  • Zhang Z, Huo Y, Guo D (2013b) A model for nanogrinding based on direct evidence of ground chips of silicon wafers. Sci China Technol Sci 56:2099–2108

    CAS  Google Scholar 

  • Zhang Z, Wang B, Kang R, Zhang B, Guo D (2015) Changes in surface layer of silicon wafers from diamond scratching. CIRP Ann 64:349–352

    Google Scholar 

  • Zhang Z, Wang B, Huang S, Wen B, Yang S, Zhang B, Lin CT, Jiang N, Jin Z, Guo D (2016a) A novel approach to fabricating a nanotwinned surface on a ternary nickel alloy. Mater Design 106:313–320

    CAS  Google Scholar 

  • Zhang Z, Wang B, Zhou P, Kang R, Zhang B, Guo D (2016b) A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers. Sci Rep 6:26891

    CAS  Google Scholar 

  • Zhang Z, Wang B, Zhou P, Guo D, Kang R, Zhang B (2016c) A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors. Sci Rep 6:22466

    CAS  Google Scholar 

  • Zhang Z, Huang S, Chen L, Wang B, Wen B, Zhang B, Guo D (2017a) Ultrahigh hardness on a face-centered cubic metal. Appl Surf Sci 416:891–900

    CAS  Google Scholar 

  • Zhang Z, Cui J, Wang B, Wang Z, Kang R, Guo D (2017b) A novel approach of mechanical chemical grinding. J Alloy Compd 726:514–524

    CAS  Google Scholar 

  • Zhang Z, Shi Z, Du Y, Yu Z, Guo L, Guo D (2018) A novel approach of chemical mechanical polishing for a titanium alloy using an environment-friendly slurry. Appl Surf Sci 427:409–415

    CAS  Google Scholar 

  • Zhang Z, Cui J, Zhang J, Liu D, Yu Z, Guo D (2019) Environment friendly chemical mechanical polishing of copper. Appl Surf Sci 467–468:5–11

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank UGC, India for financial support and Ms. Ria Ghosh acknowledges DST-INSPIRE, India for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pal Chowdhury.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R., Kundu, S., Majumder, R. et al. One-pot synthesis of multifunctional ZnO nanomaterials: study of superhydrophobicity and UV photosensing property. Appl Nanosci 9, 1939–1952 (2019). https://doi.org/10.1007/s13204-019-00985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-00985-8

Keywords

Navigation