Skip to main content
Log in

Study of interface chemistry between the carrier-transporting layers and their influences on the stability and performance of organic solar cells

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

This is the first study that described how the interface interactions of graphene oxide (GO) with poly(3-hexylthiophene): 3′H-cyclopropa [8,25] [5,6] fullerene-C60-D5h(6)-3′-butanoic acid 3′-phenyl methyl ester (PCBM) and with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) are influencing the stability and performance of poly(3-hexylthiophene): poly(3-hexylthiophene) (P3HT) (P3HT:PCBM)-based organic solar cell. The interface functionalization of these carrier-transporting layers was confirmed by XRD pattern, XPS analysis, and Raman spectroscopy. These interfaces chemical bond formation helped to firmly attach the GO layer with PCBM and PEDOT:PSS layers, forming a strong barrier against water molecule absorption and also provided an easy pathway for fast transfer of free carriers between P3HT:PCBM layer and metal electrodes via the backbone of the conjugated GO sheets. Because of these interface interactions, the device fabricated with PCBM/GO composite as an electron transport layer and GO/PEDOT:PSS composite as hole transport layer demonstrated a remarkable improvement in the value of power conversion efficiency (5.34%) and reproducibility with a high degree of control over the environmental stability (600 h). This study is paving a way for a new technique to further improve the stability and PCE for the commercialization of OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aissa B, Nedil M, Kroeger J, Ali A, Isaifan RJ, Essehli R, Mahmoud KA (2018) Graphene nanoplatelet doping of P3HT: PCBM photoactive layer of bulk heterojunction organic solar cells for enhancing performance. Nanotechnology. https://doi.org/10.1088/1361-6528/aaa62d

    Google Scholar 

  • Alemu D, Wei H-Y, Ho K-C, Chu C-W (2012) Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci 5:9662–9671

    Article  Google Scholar 

  • Balis N, Stratakis E, Kymakis E (2016) Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells. Mater Today 19:580–594

    Article  Google Scholar 

  • Bin H et al (2016) 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun 7:13651

    Article  Google Scholar 

  • Brütting W (2006) Introduction to the physics of organic semiconductors. Wiley, Hoboken

    Google Scholar 

  • Chang SH, Chiang C-H, Kao F-S, Tien C-L, Wu C-G (2014) Unraveling the enhanced electrical conductivity of PEDOT: PSS thin films for ITO-free organic photovoltaics. IEEE Photonics J 6:1–7

    Article  Google Scholar 

  • Chen L, Du D, Sun K, Hou J, Ouyang J (2014) Improved efficiency and stability of polymer solar cells utilizing two-dimensional reduced graphene oxide: graphene oxide nanocomposites as hole-collection material. ACS Appl Mater Interfaces 6:22334–22342

    Article  Google Scholar 

  • Cheng P, Li Y, Zhan X (2013) A DMF-assisted solution process boosts the efficiency in P3HT: PCBM solar cells up to 5. 31%. Nanotechnology 24:484008

    Article  Google Scholar 

  • Cheng J, Xie F, Liu Y, Wei E, Li X, Yang Y, Choy WC (2015) Efficient hole transport layers with widely tunable work function for deep HOMO level organic solar cells. J Mater Chem A 3:23955–23963

    Article  Google Scholar 

  • Choi JW, Han MG, Kim SY, Oh SG, Im SS (2004) Poly (3, 4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA. Solut Synth Metals 141:293–299

    Article  Google Scholar 

  • Cohen A et al (2016) Highly thermostable and insensitive energetic hybrid coordination polymers based on graphene Oxide–Cu (II). Complex Chem Mater 28:6118–6126

    Article  Google Scholar 

  • da Silva WJ, Yusoff ARBM., Jang J (2013) GO: PEDOT: PSS for high-performance green phosphorescent organic light-emitting diode. IEEE Electron Device Lett 34:1566–1568

    Article  Google Scholar 

  • Deckman I, Moshonov M, Obuchovsky S, Brener R, Frey GL (2014) Spontaneous interlayer formation in OPVs by additive migration due to additive–metal interactions. J Mater Chem A 2:16746–16754

    Article  Google Scholar 

  • Diez Pascual AM, Luceño Sánchez JA, Peña Capilla R, Garcia Diaz P (2018) Recent developments in graphene/polymer nanocomposites for application in polymer. Solar Cells Polymers 10:217

    Google Scholar 

  • Fabretto M, Zuber K, Hall C, Murphy P, Griesser HJ (2009) The role of water in the synthesis and performance of vapour phase polymerised PEDOT electrochromic devices. J Mater Chem 19:7871–7878

    Article  Google Scholar 

  • Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57

    Article  Google Scholar 

  • Gallasch T, Stockhoff T, Baither D, Schmitz G (2011) Ion beam sputter deposition of V2O5 thin films. J Power Sour 196:428–435

    Article  Google Scholar 

  • Gao Y, Yip H-L, Hau SK, O’Malley KM, Cho NC, Chen H, Jen AK-Y (2010) Anode modification of inverted polymer solar cells using graphene oxide. Appl Phys Lett 97:251

    Google Scholar 

  • Gilot J, Barbu I, Wienk MM, Janssen RA (2007) The use of ZnO as optical spacer in polymer solar cells: theoretical and experimental study. Appl Phys Lett 91:113520

    Article  Google Scholar 

  • Grzyb B, Gryglewicz S, Śliwak A, Diez N, Machnikowski J, Gryglewicz G (2016) Guanidine, amitrole and imidazole as nitrogen dopants for the synthesis of N-graphenes. RSC Adv 6:15782–15787

    Article  Google Scholar 

  • He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591

    Article  Google Scholar 

  • He X et al. (2015) Photogenerated intrinsic free carriers in small-molecule organic semiconductors visualized by ultrafast spectroscopy. Sci Rep 5:17076

    Article  Google Scholar 

  • Helander M, Wang Z, Greiner M, Liu Z, Lian K, Lu Z (2009) The effect of UV ozone treatment on poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate). Appl Phys Lett 95:280

    Google Scholar 

  • Hilal M, Han JI (2018) Significant improvement in the photovoltaic stability of bulk heterojunction organic solar cells by the molecular level interaction of graphene oxide with a PEDOT: PSS composite hole transport layer. Sol Energy 167:24–34

    Article  Google Scholar 

  • Huang J-H et al (2010) Using a low temperature crystallization process to prepare anatase TiO 2 buffer layers for air-stable inverted polymer solar cells. Energy Environ Sci 3:654–658

    Article  Google Scholar 

  • Irwin MD, Buchholz DB, Hains AW, Chang RP, Marks TJ (2008) p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc Natl Acad Sci 105:2783–2787

    Article  Google Scholar 

  • Jeon Y-J, Yun J-M, Kim D-Y, Na S-I, Kim S-S (2014) Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process. Appl Surf Sci 296:140–146

    Article  Google Scholar 

  • Ji T, Tan L, Hu X, Dai Y, Chen Y (2015) A comprehensive study of sulfonated carbon materials as conductive composites for polymer solar cells. Phys Chem Chem Phys 17:4137–4145

    Article  Google Scholar 

  • Jiang CY, Sun XW, Zhao DW, Kyaw AKK, Li YN (2010) Low work function metal modified ITO as cathode for inverted polymer solar cells. Sol Energy Mater Sol Cells 94:1618–1621

    Article  Google Scholar 

  • Jørgensen M, Norrman K, Krebs FC (2008) Stability/degradation of polymer solar cells. Solar Energy Mater Solar Cells 92:686–714

    Article  Google Scholar 

  • Kakavelakis G, Konios D, Stratakis E, Kymakis E (2014) Enhancement of the efficiency and stability of organic photovoltaic devices via the addition of a lithium-neutralized graphene oxide electron-transporting layer. Chem Mater 26:5988–5993

    Article  Google Scholar 

  • Kakavelakis G, Maksudov T, Konios D, Paradisanos I, Kioseoglou G, Stratakis E, Kymakis E (2017) Efficient and highly air stable planar inverted Perovskite solar cells with reduced Graphene oxide doped PCBM electron transporting layer. Adv Energy Mater 7:1602120. https://doi.org/10.1002/aenm.201602120

    Article  Google Scholar 

  • Kanwat A, Jang J (2016) Enhanced organic photovoltaic properties via structural modifications in PEDOT: PSS due to graphene oxide doping. Mater Res Bull 74:346–352

    Article  Google Scholar 

  • Kim TY, Park CM, Kim JE, Suh KS (2005) Electronic, chemical and structural change induced by organic solvents in tosylate-doped poly (3, 4-ethylenedioxythiophene)(PEDOT-OTs). Synth Metals 149:169–174

    Article  Google Scholar 

  • Kim YH, Sachse C, Machala ML, May C, Müller-Meskamp L, Leo K (2011) Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv Func Mater 21:1076–1081

    Article  Google Scholar 

  • Kim YG, Kwon KC, Van Le Q, Hong K, Jang HW, Kim SY (2016) Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells. J Power Sour 319:1–8

    Article  Google Scholar 

  • Kumar A, Singh P, Kulkarni N, Kaur D (2008) Structural and optical studies of nanocrystalline V2O5 thin films. Thin Solid Films 516:912–918

    Article  Google Scholar 

  • Kyaw AKK, Wang DH, Gupta V, Zhang J, Chand S, Bazan GC, Heeger AJ (2013) Efficient solution-processed small-molecule solar cells with inverted. Struct Adv Mater 25:2397–2402

    Article  Google Scholar 

  • Lee D-Y, Na S-I, Kim S-S (2016) Graphene oxide/PEDOT: PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8:1513–1522

    Article  Google Scholar 

  • Li S-S, Tu K-H, Lin C-C, Chen C-W, Chhowalla M (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174

    Article  Google Scholar 

  • Li D, Cui J, Li H, Huang D, Wang M, Shen Y (2016) Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Sol Energy 131:176–182

    Article  Google Scholar 

  • Liu J, Xue Y, Gao Y, Yu D, Durstock M, Dai L (2012) Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv Mater 24:2228–2233

    Article  Google Scholar 

  • Lonkar SP, Raquez J-M, Dubois P (2015) One-pot microwave-assisted synthesis of graphene/layered double hydroxide (LDH) nanohybrids. Nano-Micro Lett 7:332–340

    Article  Google Scholar 

  • Maibach J, Mankel E, Mayer T, Jaegermann W (2013) The band energy diagram of PCBM–DH6T bulk heterojunction solar cells: synchrotron-induced photoelectron spectroscopy on solution processed DH6T: PCBM blends and in situ prepared PCBM/DH6T interfaces. J Mater Chem C 1:7635–7642

    Article  Google Scholar 

  • Meng L-j, Andritschky M, Dos Santos M (1993) The effect of substrate temperature on the properties of dc reactive magnetron sputtered titanium oxide films. Thin Solid Films 223:242–247

    Article  Google Scholar 

  • Mongstad T, Thøgersen A, Subrahmanyam A, Karazhanov S (2014) The electronic state of thin films of yttrium, yttrium hydrides and yttrium oxide. Sol Energy Mater Sol Cells 128:270–274

    Article  Google Scholar 

  • Murray IP et al (2011) Graphene oxide interlayers for robust, high-efficiency organic photovoltaics. J Phys Chem Lett 2:3006–3012

    Article  Google Scholar 

  • Ouyang J (2013) Solution-processed PEDOT: PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids. ACS Appl Mater Interface 5:13082–13088

    Article  Google Scholar 

  • Palaniappan S, John A (2008) Polyaniline materials by emulsion polymerization pathway. Prog Polym Sci 33:732–758

    Article  Google Scholar 

  • Park H, Lee SH, Kim FS, Choi HH, Cheong IW, Kim JH (2014) Enhanced thermoelectric properties of PEDOT: PSS nanofilms by a chemical dedoping process. J Mater Chem A 2:6532–6539

    Article  Google Scholar 

  • Pingree LS, MacLeod BA, Ginger DS (2008) The changing face of PEDOT: PSS films: substrate, bias, and processing effects on vertical charge transport. J Phys Chem C 112:7922–7927

    Article  Google Scholar 

  • Po R, Carbonera C, Bernardi A, Camaioni N (2011) The role of buffer layers in polymer solar cells. Energy Environ Sci 4:285–310

    Article  Google Scholar 

  • Qu S, Li M, Xie L, Huang X, Yang J, Wang N, Yang S (2013) Noncovalent functionalization of graphene attaching [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells. ACS Nano 7:4070–4081

    Article  Google Scholar 

  • Rafique S, Abdullah SM, Shahid MM, Ansari MO, Sulaiman K (2017) Significantly improved photovoltaic performance in polymer bulk heterojunction solar cells with graphene oxide/PEDOT: PSS double decked hole transport layer. Sci Rep 7:39555. https://doi.org/10.1038/srep39555

    Article  Google Scholar 

  • Roy A, Park SH, Cowan S, Tong MH, Cho S, Lee K, Heeger AJ (2009) Titanium suboxide as an optical spacer in polymer solar cells. Appl Phys Lett 95:179

    Google Scholar 

  • Shrotriya V, Li G, Yao Y, Chu C-W, Yang Y (2006) Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl Phys Lett 88:073508

    Article  Google Scholar 

  • Singh E, Nalwa HS (2015) Stability of graphene-based heterojunction solar cells. Rsc Adv 5:73575–73600

    Article  Google Scholar 

  • Singh SP, Sharma G (2014) Near infrared organic semiconducting materials for bulk heterojunction and dye-sensitized Solar Cells. Chem Record 14:419–481

    Article  Google Scholar 

  • Steim R, Choulis SA, Schilinsky P, Brabec CJ (2008) Interface modification for highly efficient organic photovoltaics. Appl Phys Lett 92:72

    Article  Google Scholar 

  • Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ (2011) Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv Mater 23:1679–1683

    Article  Google Scholar 

  • Sun X et al (2017) Halide anion–fullerene π noncovalent interactions: n-doping and a halide anion migration mechanism in p–i–n perovskite solar cells. J Mater Chem A 5:20720–20728

    Article  Google Scholar 

  • Wang S, Yu D, Dai L, Chang DW, Baek J-B (2011) Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction. ACS Nano 5:6202–6209

    Article  Google Scholar 

  • Wang Z et al (2014) Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat Commun 5:5002

    Article  Google Scholar 

  • Wang F, Tan ZA, Li Y (2015) Solution-processable metal oxides/chelates as electrode buffer layers for efficient and stable polymer solar cells. Energy Environ Sci 8:1059–1091

    Article  Google Scholar 

  • Xiao B, Wu H, Cao Y (2015) Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells. Mater Today 18:385–394

    Article  Google Scholar 

  • Xie J et al (2017) Self-organized fullerene interfacial layer for efficient and low-temperature processed planar perovskite solar cells with high UV-light stability. Adv Sci 4:1700018. https://doi.org/10.1002/advs.201700018

    Article  Google Scholar 

  • Xu JY, Liu J, Li KD, Miao L, Tanemura S (2015) Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene. Sci Technol Adv Mater 16:025006

    Article  Google Scholar 

  • Yeo J-S et al (2015) Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12:96–104

    Article  Google Scholar 

  • Yin Z, Zheng Q, Chen S-C, Cai D (2013) Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt. ACS Appl Mater Interf 5:9015–9025

    Article  Google Scholar 

  • Yin Z, Wei J, Zheng Q (2016a) Interfacial materials for organic solar cells: recent advances and perspectives. Adv Sci 3:1500362. https://doi.org/10.1002/advs.201500362

    Article  Google Scholar 

  • Yin Z, Zheng Q, Chen SC, Cai D, Ma Y (2016b) Controllable ZnMgO electron-transporting layers for long-term stable organic solar cells with 8.06% efficiency after one-year storage. Adv Energy Mater 6:1501493. https://doi.org/10.1002/aenm.201501493

    Article  Google Scholar 

  • Yu D, Yang Y, Durstock M, Baek J-B, Dai L (2010) Soluble P3HT-grafted graphene for efficient bilayer—heterojunction photovoltaic devices. ACS Nano 4:5633–5640

    Article  Google Scholar 

  • Yu D, Nagelli E, Naik R, Dai L (2011) Asymmetrically functionalized graphene for photodependent diode rectifying behavior. Angew Chem Int Ed 50:6575–6578

    Article  Google Scholar 

  • Yu Y-H, Lin Y-Y, Lin C-H, Chan C-C, Huang Y-C (2014) High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polymer Chem 5:535–550

    Article  Google Scholar 

  • Zhang J, Xu Y, Liu Z, Yang W, Liu J (2015) A highly conductive porous graphene electrode prepared via in situ reduction of graphene oxide using Cu nanoparticles for the fabrication of high performance supercapacitors. RSC Adv 5:54275–54282

    Article  Google Scholar 

  • Zhang W et al (2017) Thermal stability-enhanced and high-efficiency planar perovskite solar cells with interface passivation. ACS Appl Mater Interf 9:38467–38476

    Article  Google Scholar 

  • Zhao Z et al (2015) Improving the conductivity of PEDOT: PSS hole transport layer in polymer solar cells via copper (II) bromide salt doping. ACS Appl Mater Interf 7:1439–1448

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the ministry of Education (NRF-2017R1D1A1B03030456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong In Han.

Ethics declarations

Conflict of interest

The authors clearly declared that there is no conflict of interest for this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilal, M., Han, J.I. Study of interface chemistry between the carrier-transporting layers and their influences on the stability and performance of organic solar cells. Appl Nanosci 8, 1325–1341 (2018). https://doi.org/10.1007/s13204-018-0818-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0818-5

Keywords

Navigation