Skip to main content
Log in

Equilibrium location for spherical DNA and toroidal cyclodextrin

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Cyclodextrin comprises a ring structure composed of glucose molecules with an ability to form complexes of certain substances within its central cavity. The compound can be utilised for various applications including food, textiles, cosmetics, pharmaceutics, and gene delivery. In gene transfer, the possibility of forming complexes depends upon the interaction energy between cyclodextrin and DNA molecules which here are modelled as a torus and a sphere, respectively. Our proposed model is derived using the continuum approximation together with the Lennard-Jones potential, and the total interaction energy is obtained by integrating over both the spherical and toroidal surfaces. The results suggest that the DNA prefers to be symmetrically situated about 1.2 Å above the centre of the cyclodextrin to minimise its energy. Furthermore, an optimal configuration can be determined for any given size of torus and sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves PS, Mesquita ON, Rocha MS (2015) Controlling cooperativity in \(\beta\)-cyclodextrin-DNA binding reactions. J Phys Chem Lett 6:3549–3554

    Article  Google Scholar 

  • Astray G, Gonzalez-Barreiro C, Mejuto JC, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640

    Article  Google Scholar 

  • Baowan D, Cox BJ, Hilder TA, Hill JM, Thamwattana N (2017) Modelling and mechanics of carbon-based nanostructured materials. William Andrew, Norwich

    Google Scholar 

  • Cramer F (1954) Einschlussverbindungen. Springer, Berlin

    Book  Google Scholar 

  • Cryan SA, Holohan A, Donohue R, Darcy R, O’Driscoll CM (2004) Cell transfection with polycationic cyclodextrin vectors. Eur J Pharm Sci 21:625–633

    Article  Google Scholar 

  • Freudenberg K, Schaaf E, Dumpert G, Ploetz T (1939) Neue Ansichten über die Stärke. Naturwissenschaften 51:850–853

    Article  Google Scholar 

  • González A, Igarzabal CIA (2015) Nanocrystal-reinforced soy protein films and their application as active packaging. Food Hydrocoll 43:777–784

  • Howie JM (2001) Real analysis. Springer, London

    Book  Google Scholar 

  • Kfoury M, Azezova L, Ruellan S, Gerges HG, Fourmentin S (2015) Complexation of estragole as pure compound and as main component of basil and tarragon essential oils with cyclodextrins. Carbohyd Polym 118:156–164

  • Lai W-F (2014) Cyclodextrins in non-viral gene delivery. Biomaterials 35:401–411

    Article  Google Scholar 

  • Maitland GC, Rigby M, Smith EB, Wakeham WA (1981) Intermolecular forces their origin and determination. Clarendon Press, Oxford

    Google Scholar 

  • Putthikorn S, Baowan D (2016) Mathematical model for drug molecules encapsulated in lipid nanotube. Phys A 461:46–60

    Article  Google Scholar 

  • Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114:10024–10035

    Article  Google Scholar 

  • Redenti E, Pietra C, Gerloczy A, Szente L (2001) Cyclodextrins in oligonucleotide delivery. Adv Drug Deliv Rev 53:235–244

    Article  Google Scholar 

  • Sarapat P, Thamwattana N, Baowan D (2016) Continuum modelling for adhesion between paint surfaces. Int J Adhes Adhes 70:234–238

    Article  Google Scholar 

  • Schardinger F (1911) Bildung kristallisierter polysaccharide (dextrine) aus starkekleister durch microben. Zentralbl Bakteriol Parasitenk Abt II(29):188–197

    Google Scholar 

  • Thamwattana N, Hill JM (2009) Nanotube bundle oscillators: carbon and boron nitride nanostructures. Phys B 404:3906–3910

    Article  Google Scholar 

  • Tiwari G, Tiwari R, Rai AK (2010) Cyclodextrins in delivery systems: applications. J Pharm Bioall Sci 2:72–79

    Article  Google Scholar 

  • Valle EMMD (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  Google Scholar 

  • Villiers A (1891) Sur la fermentation de la fécule par l’action du ferment butyrique. Compt Rendus Acad Sci 112:536–538

    Google Scholar 

  • Voncina B, Vivod V (2013) Cyclodextrins in textile finishing, Eco-Friendly Textile Dyeing and Finishing. In: Gunay M (ed) InTech

Download references

Acknowledgements

PS gratefully acknowledges the financial support from the Royal Golden Jubilee Ph.D. Scholarship of Thailand. DB is also grateful for the support of the Thailand Research Fund (RSA610018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pakhapoom Sarapat.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendices

Appendix A: Derivation of the interaction energy

On substitution with \(\delta\) into (1), the interaction energy can be obtained using the toroidal surface integration,

$$\begin{aligned} I_n^{\text {(sp)}}&=\int _{-\pi }^\pi \int _{-\pi }^\pi \frac{4\pi a^2r(R+r\cos \phi )}{(n-1)\big [R^2+r^2+\epsilon ^2+\nu ^2+2r(R\cos \phi -\nu \sin \phi )-2\epsilon (R+r\cos \phi )\cos \theta -a^2 \big ]^n} \\&\quad \times U_{n-2}\left( \frac{R^2+r^2+\epsilon ^2+\nu ^2+2r(R\cos \phi -\nu \sin \phi )-2\epsilon (R+r\cos \phi )\cos \theta +a^2}{R^2+r^2+\epsilon ^2+\nu ^2+2r(R\cos \phi -\nu \sin \phi )-2\epsilon (R+r\cos \phi )\cos \theta -a^2}\right) \> \mathrm{d}\theta \mathrm{d}\phi . \end{aligned}$$

On rewriting the Chebyshev polynomial in the series form,

$$\begin{aligned} U_n(x)=\sum _{m=0}^{\lfloor n/2-1\rfloor } (-1)^m \left( {\begin{array}{c}n-m\\ m\end{array}}\right) (2x)^{n-2m}, \end{aligned}$$

we obtain

$$\begin{aligned} I_n^{\text {(st)}}=\frac{\pi a^2}{n-1}\sum _{m=0}^{\lfloor n/2-1\rfloor }(-1)^m\left( {\begin{array}{c}n-m\\ m\end{array}}\right) 2^{n-2m}\int _{-\pi }^\pi r(R+r\cos \phi )Q_{n,m} \> \mathrm{d}\phi , \end{aligned}$$

where \(Q_{n,m}\), for \(n=3, 6\) and \(m=0,1,2,\ldots ,\lfloor n/2-1\rfloor\), are given by

$$\begin{aligned} Q_{n,m}=\int _{-\pi }^\pi \frac{[R^2+r^2+\epsilon ^2+\nu ^2+2r(R\cos \phi -\nu \sin \phi )-2\epsilon (R+r\cos \phi )\cos \theta +a^2\big ]^{n-2m-2}}{\big [R^2+r^2+\epsilon ^2+\nu ^2+2r(R\cos \phi -\nu \sin \phi )-2\epsilon (R+r\cos \phi )\cos \theta -a^2\big ]^{2n-2m-2}} \> \mathrm{d}\theta . \end{aligned}$$

We define \(\alpha = R^2+r^2+\epsilon ^2+\nu ^2+2r(R\cos \phi -\nu \sin \phi )+a^2\), \(\beta =R^2+r^2+\epsilon ^2+\nu ^2+2r(R\cos \phi -\nu \sin \phi )-a^2\), and \(\kappa =2\epsilon (R+r\cos \phi )\), so we have

$$\begin{aligned} Q_{n,m}=\int _{-\pi }^\pi \frac{(\alpha -\kappa \cos \theta )^{n-2m-2}}{(\beta -\kappa \cos \theta )^{2n-2m-2}}\> \mathrm{d}\theta . \end{aligned}$$

By making the half-angle tangent substitution, \(t=\tan \theta /2\), the equation above becomes

$$\begin{aligned} Q_{n,m}=2\int _{-\infty }^\infty \frac{(1+t^2)^{n-1}\left[ (\alpha +\kappa )t^2+\alpha -\kappa \right] ^{n-2m-2}}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^{2n-2m-2}}\> \mathrm{d}t. \end{aligned}$$

Converting the integrand into the partial fraction form yields

$$\begin{aligned} Q_{n,m}=\int _{-\infty }^\infty \sum _{j=1}^{2n-2m-2} \frac{\Psi _{n,m,j}(\alpha ,\beta ,\kappa )}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^j} \> \mathrm{d}t=\sum _{j=1}^{2n-2m-2} \Psi _{n,m,j}(\alpha ,\beta ,\kappa )D_{n,m,j}, \end{aligned}$$

where the exact functions \(\Psi _{n,m,j}(\alpha ,\beta ,\kappa )\) are as given in the Appendix B, and the \(D_{n,m,j}\) for \(j=1,2,3,\ldots ,(2n-2m-2)\) are defined as

$$\begin{aligned} D_{n,m,j}=\int _{-\infty }^\infty \frac{1}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^j} \> \mathrm{d}t. \end{aligned}$$

Further, making the substitution \(\displaystyle t=\sqrt{\frac{\beta -\kappa }{\beta +\kappa }}\tan \lambda\) leads \(D_{n,m,j}\) to

$$\begin{aligned} D_{n,m,j}=\frac{(\beta -\kappa )^{1/2-n}}{(\beta +\kappa )^{1/2}}B(1/2,n-1/2), \end{aligned}$$

where B(xy) is the beta function.

Appendix B: Details of \(\Psi _{n,m,j}(\alpha ,\beta ,\kappa )\)

The full expressions of \(Q_{n,m}\), for \(n=3, 6\) and \(m=0,1,2,\ldots ,\lfloor n/2-1\rfloor\) are given as follows

$$\begin{aligned} Q_{3,0}&=2\int _{-\infty }^\infty \left\{ \frac{\alpha +\kappa }{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] (\beta +\kappa )^3}+\frac{2\kappa (3\alpha -\beta +2\kappa )}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^2(\beta +\kappa )^3}\right. \\&\quad \left. +\frac{4\kappa ^2(3\alpha -2\beta +\kappa )}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^3(\beta +\kappa )^3}+\frac{8\kappa ^3(\alpha -\beta )}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^4(\beta +\kappa )^3}\right\} \>\text {d}t, \end{aligned}$$
$$\begin{aligned} Q_{6,0}&=2\int _{-\infty }^\infty \left\{ \frac{(\alpha +\kappa )^4}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] (\beta +\kappa )^9}+\frac{2\kappa (\alpha +\kappa )^3(9\alpha -4\beta +5\kappa )}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^2(\beta +\kappa )^9}\right. \\&\quad +\frac{8\kappa ^2(\alpha +\kappa )^2(18\alpha ^2-16\alpha \beta +20\alpha \kappa +3\beta ^2-10\beta \kappa +5\kappa ^2)}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^3(\beta +\kappa )^9} \\&\quad + \frac{1}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^4(\beta +\kappa )^9} [16\kappa ^3(\alpha +\kappa )(42\alpha ^3-56\alpha ^2\beta +70\alpha ^2\kappa \\&\quad +21\alpha \beta ^2-70\alpha \beta \kappa +35\alpha \kappa ^2-2\beta ^3+15\beta ^2\kappa -20\beta \kappa ^2+5\kappa ^3)]\\&\quad +\frac{1}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^5(\beta +\kappa )^9}[16\kappa ^4(126\alpha ^4-224\alpha ^3\beta +280\alpha ^3\kappa \\&\quad +126\alpha ^2\beta ^2-420\alpha ^2\beta \kappa +210\alpha ^2\kappa ^2-24\alpha \beta ^3+180\alpha \beta ^2\kappa -240\alpha \beta \kappa ^2\\&\quad +60\alpha \beta ^3+\beta ^4-20\beta ^3\kappa +60\beta ^2\kappa ^2-40\beta \kappa ^3+5\kappa ^4)]\\&\quad +\frac{1}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^6(\beta +\kappa )^9}[32\kappa ^5(126\alpha ^4-280\alpha ^3\beta +224\alpha ^3\kappa \\&\quad +210\alpha ^2\beta ^2-420\alpha ^2\beta \kappa +126\alpha ^2\kappa ^2-60\alpha \beta ^3+240\alpha \beta ^2\kappa -180\alpha \beta \kappa ^2\\&\quad +24\alpha \kappa ^3+5\beta ^4-40\beta ^3\kappa +60\beta ^2\kappa ^2-20\beta \kappa ^3+\kappa ^4)] \\&\quad +\frac{1}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^7(\beta +\kappa )^9}[128\kappa ^6(\alpha -\beta )(42\alpha ^3-70\alpha ^2\beta \\&\quad +56\alpha ^2\kappa +35\alpha \beta ^2-70\alpha \beta \kappa +21\alpha \kappa ^2-5\beta ^3+20\beta ^2\kappa -15\beta \kappa ^2+2\kappa ^3)]\\&\quad +\frac{256\kappa ^7(\alpha -\beta )^2(18\alpha ^2-20\alpha \beta +16\alpha \kappa +5\beta ^2-10\beta \kappa +3\kappa ^2)}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^8(\beta +\kappa )^9}\\&\quad +\left. \frac{256\kappa ^8(\alpha -\beta )^3(9\alpha -5\beta +4\kappa )}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^9(\beta +\kappa )^9}+\frac{512\kappa ^9(\alpha -\beta )^4}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^{10}(\beta +\kappa )^9}\right\} \>\text {d}t, \end{aligned}$$
$$\begin{aligned} Q_{6,1}&=2\int _{-\infty }^\infty \left\{ \frac{(\alpha +\kappa )^2}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] (\beta +\kappa )^7}+\frac{2\kappa (\alpha +\kappa )(7\alpha -2\beta +5\kappa )}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^2(\beta +\kappa )^7 }\right. \\&\quad +\frac{4\kappa ^2(21\alpha ^2-12\alpha \beta +30\alpha \kappa +\beta ^2-10\beta \kappa +10\kappa ^2)}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^3(\beta +\kappa )^7}\\&\quad +\frac{40\kappa ^3(7\alpha ^2-6\alpha \beta +8\alpha \kappa +\beta ^2-4\beta \kappa +2\kappa ^2)}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^4(\beta +\kappa )^7}\\&\quad +\frac{80\kappa ^4(7\alpha ^2-8\alpha \beta +6\alpha \kappa +2\beta ^2-4\beta \kappa +\kappa ^2)}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^5(\beta +\kappa )^7}\\&\quad +\frac{32\kappa ^5(21\alpha ^2-30\alpha \beta +12\alpha \kappa +10\beta ^2-10\beta \kappa +\kappa ^2)}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^6(\beta +\kappa )^7}\\&\quad \left. +\frac{64\kappa ^6(\alpha -\beta )(7\alpha -5\beta +2\kappa )}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^7(\beta +\kappa )^7}+\frac{128\kappa ^7(\alpha -\beta )^2}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^8(\beta +\kappa )^7}\right\} \>\text {d}t, \end{aligned}$$

and

$$\begin{aligned} Q_{6,2}&=2\int _{-\infty }^\infty \left\{ \frac{1}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] (\beta +\kappa )^5}+\frac{10\kappa }{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^2(\beta +\kappa )^5}\right. \\&\quad +\frac{40\kappa ^2}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^3(\beta +\kappa )^5}+\frac{80\kappa ^3}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^4(\beta +\kappa )^5}\\&\quad \left. +\frac{80\kappa ^4}{\left[ (\beta +\kappa )t^2+\beta -\kappa \right] ^5(\beta +\kappa )^5} \right\} \>\text {d}t. \end{aligned}$$

where \(\alpha ,\beta\), and \(\kappa\) are defined, respectively, by \(\alpha = R^2+r^2+\epsilon ^2+\nu ^2+2r(R\cos \phi -\nu \sin \phi )+a^2\), \(\beta =R^2+r^2+\epsilon ^2+\nu ^2+2r(R\cos \phi -\nu \sin \phi )-a^2\), and \(\kappa =2\epsilon (R+r\cos \phi )\).

Appendix C: Energy different between non-functionalised cyclodextrin and its derivatives

Figure 6 shows the energy different between the system of non-functionalised cyclodextrin and its derivatives.

Fig. 6
figure 6

Energy different of DNA and functionalised cyclodextrins from energy of non-functionalised cyclodextrin where spherical DNA located on a x-axis and b z-axis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarapat, P., Baowan, D. & Hill, J.M. Equilibrium location for spherical DNA and toroidal cyclodextrin. Appl Nanosci 8, 537–544 (2018). https://doi.org/10.1007/s13204-018-0799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0799-4

Keywords

Mathematics Subject Classification

Navigation