Skip to main content
Log in

Fungal diversity in rhizosphere of root-knot nematode infected tomatoes in Tunisia

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

This research explores the occurrence and diversity of fungi associated with root-knot nematodes (Meloidogyne spp.) infestations on tomato crops in bioclimatic zones of Tunisia. One hundred and thirty five tomato samples (roots and soil) collected between 2011 to 2013 from tomato fields were screened for Oomycetes and other fungi. A high level of fungal diversity was found in the presence of Meloidogyne spp. A total of 31 fungal species belonging to 17 different genera were recovered from roots and soil samples collected in fields infested with root-knot nematode. The most frequent fungal species associated with the nematode was Fusarium oxysporum (11%) followed by Fusarium solani (6%). The species composition was dependent on environmental conditions. Temperature seems to be important as the rhizosphere microflora in the Kebili and Tozeur areas with ‘saharien’ bioclimatic stages was different from other localities. Our findings may be valuable for predicting this disease complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anastasi A, Vizzini A, Prigione V, Varese GC (2009) Wood degrading fungi: morphology, metabolism and environmental applications. In: Varma A, Chauhan AK (eds) A textbook of molecular biotechnology. I.K. International, New Delhi, pp 957–993

    Google Scholar 

  • Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different Ecophysiological groups of Fungi. In: Goltapeh E, Danesh Y, Varma A (eds) Fungi as Bioremediators. Soil biology, vol 32. Springer, Berlin, Heidelberg

    Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267–274

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–266

    PubMed  CAS  Google Scholar 

  • Barnett HL, Hunter BB (1998) Descriptions and illustrations of genera. Illustrated genera of imperfect fungi. The Amer. Phytopathol. Soci. Press, St. Paul Minnesota, pp 59–218

    Google Scholar 

  • Bhagwati B, Goswami BK, Singh CS (2000) Management of disease complex of tomato caused by Meloidogyne incognita and Fusarium oxyporum f.sp. lycopersici through bioagents. Indian J Nematol 30:16–22

    Google Scholar 

  • Bogner CW, Kariuki GM, Elashry A, Sichtermann G, Buch AK, Mishra B et al (2016) Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential. Mycol Prog 15:30

    Google Scholar 

  • Brimecombe MJ, De Lelj FA, Lynch JM (2001) The rhizosphere. The effect of root exudates on rhizosphere microbil populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant Interface. Marcel Dekker, New York, pp 95–140

    Google Scholar 

  • Chen YL, Xu TL, Veresoglou SD, Hu HW, Hao ZP, Hu YJ et al (2017) Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biol Biochem 110:12–21

    CAS  Google Scholar 

  • Cocking EC (2003) Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169–175

    CAS  Google Scholar 

  • Davies KG (2005) Interactions between nematodes and microorganisms: bridging ecological and molecular approaches. Adv Appl Microbiol 57:53–78

    PubMed  CAS  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil Fungi. Academic Press, New York, p 1156

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1993) Compendium of soil fungi. v. II. Academic Press, San Francisco

    Google Scholar 

  • Ebrahim AS, Fininsa C, Mekete T, Decraemer W, Wesemael W (2015) Tomato (Solanum lycopersicum) and root-knot nematodes (Meloidogyne spp.): a century-old battle. Nematology 17(9):995–1009

    Google Scholar 

  • Elias KS, Zamir D, Lichtmanpleban T, Katan T (1993) Population-structure of Fusarium oxysporum f. sp. lycopersici -restriction fragment length polymorphisms provide genetic evidence that vegetative compatibility group is an indicator of evolutionary origin. Mol Plant-Microbe Interact 6:565–572

    CAS  Google Scholar 

  • Ellis MB (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew

    Google Scholar 

  • Ellis MB (1976) More dematiaceous Hyphomycetes. Commonwealth mycological institute: Kew

  • Faeth SH, Sullivan TJ (2003) Mutualistic asexual endophytes in a native grass are usually parasitic. Am Nat 161:310–325

    PubMed  Google Scholar 

  • Fazal M, Khan MI, Raza MMA, Siddiqui ZA (1994) Interaction between Meloidogyne incognita and Fusarium oxysporum f. sp. lentis on lentil. Nematol Medit 22:185–187

    Google Scholar 

  • Gilman JC (1957) A manual of soil fungi, Iowa State University Press, USA, (Indian edition, 1967

    Google Scholar 

  • Gregory PH (1961) The microbiology of the atmosphere. Leonard Hill Book Ltd., London 2nd edition, 1973

  • Hajji L, Regaieg H, M’Hamdi-Boughalleb N, Horrigue-Raouani N (2016a) Studies on disease complex incidence of Meloidogyne javanica and Fusarium oxysporum f.sp. lycopersici on resistant and susceptible tomato cultivars. Journal of Agricultural Sciences and Food Technology 2(4):41–48

    Google Scholar 

  • Hajji L, Chattaoui M, Regaieg H, M’Hamdi-Boughalleb N, Rhouma A, Horrigue-Raouani N (2016b) Biocontrol effectiveness of indigenous Trichoderma species against Meloidogyne javanica and Fusarium oxysporum f.sp. radicis-lycopersici on tomato. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnology Engineering 10(10):551–554

    Google Scholar 

  • Hajji L, Hlaoua W, Regaieg H, Horrigue-Raouani N (2017) Biocontrol potential of Verticillium leptobactrum and Purpureocillium lilacinum against Meloidogyne javanica and Globodera pallida on potato (Solanum tuberosum). Am J Potato Res 94:178–183

    Google Scholar 

  • Hajji-Hedfi L, Regaieg H, Larayedh A, Chihani N, Horrigue-Raouani N (2017) Biological control of wilt disease complex on tomato crop caused by Meloidogyne javanica and Fusarium oxysporum f. sp. lycopersici by Verticillium leptobactrum. Journal of Environmental Sciences and Pollution Research 25(19):18297–18302

    Google Scholar 

  • Hallmann J, Davies KG, Sikora RA (2009) Biological control using microbial pathogens, endophytes and antagonists. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CAB International, Wallingford, pp 380–411

    Google Scholar 

  • Hammer MP, Adams M, Hughes JM (2013) Evolutionary processes and biodiversity. In: Humphries P, Walker KF (eds) Ecology of Australian freshwater fishes. CSIRO Publishing, Collingwood, pp 49–79

    Google Scholar 

  • Hasan A (1993) The role of fungi in fungus-nematode interactions. In: Khan MW (ed) Nematode interactions. Springer, Dordrecht, pp 273–287

    Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderden berucksichtigung und Brache. Arb Dtsch Landwirtsch Gesellschaft 98:59–78

    Google Scholar 

  • Hussain H, Krohn K, Ahmed I, Draeger S, Schulz B, Pietro S, Pescitelli G (2012) Phomopsinones A-D: four new pyrenocines from an endophytic fungus, Phomopsis sp. Eur J Org Chem 2012:1783–1789

    CAS  Google Scholar 

  • Hussey RS, Janssen GJW (2002) Root-knot nematode: Meloidogyne species. In: Starr JL, Cook R, Bridge J (eds) Plant resistance to parasitic nematodes. CAB International, Wallingford, pp 43–70

    Google Scholar 

  • Ibrahim IKA, Handoo ZA, El-Sherbiny AA (2000) A survey of phytoparasitic nematodes on cultivated and non- cultivated plants in northwestern Egypt. Supplement to J Nemotol 32(45):478–485

    CAS  Google Scholar 

  • Kazerooni EA, Maharachchikumbura SSN, Rethinasamy V, Al-Mahrouqi H, Al-Sadi AM (2017) Fungal diversity in tomato rhizosphere soil under conventional and desert farming systems. Front Microbiol 8:14–62

    Google Scholar 

  • Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 38:423–441

    PubMed  CAS  Google Scholar 

  • Khan TA, Husain SI (1991) Effect of age of papaya seedlings on the development of disease complex caused by Meloidogyne incognita and Fusarium solani. Nematol. Medit. 19:327–329

    Google Scholar 

  • Koenning SR, Wrather JA, Kirkpatrick TL, Walker NR, Starr JL, Mueller JD (2004) Plant-parasitic nematodes attacking cotton in the United States: old and emerging production challenges. Plant Dis 88(2):100–113

    PubMed  Google Scholar 

  • Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika 29:1–27

    Google Scholar 

  • Lamichhane JR, Venturi V (2015) Synergisms between microbial pathogens in plant disease complexes: a growing trend. Front Plant Sci 6(385). https://doi.org/10.3389/fpls.2015.00385

  • Lynch JM (1990) The rhizosphere. John Wiley and Sons, New York

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, N.J. 620 pp

    Google Scholar 

  • Makete T (2000) Damage potentials of Meloidogyne incognita and Meloidogyne javanica populations from Ethiopia and Belgium. M.Sc. Thesis, University of Ghent, Belgium, pp: 46

  • Manoch L (1998) Biodiversity of soil fungi in Thailand. In Proceedings of the Asia-Pacific mycological conference on biodiversity and biotechnology. Hua Hin.: 126–140

  • Navas A, Castagnone-Sereno P, Blázquez J, Espárrago G (2001) Population diversity and genetic structure of Meloidogyne (Nematoda: Meloidogynidae) in a geographically restricted area. Nematology 3:243–254

    CAS  Google Scholar 

  • Qin S, Yeboah S, Xu X, Liu Y, Yu B (2017) Analysis on fungal diversity in rhizosphere soil of continuous cropping potato subjected to different furrow-ridge mulching managements. Front Microbiol 8:845. https://doi.org/10.3389/fmicb.2017.00845

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Raper KB, Thom C (1949) A manual of the penicillia. The Williams & Wilkins Company, Baltimore

    Google Scholar 

  • Regaieg H, Horrigue-Raouani N (2012) Histological response of resistant tomato cultivars to infection of virulent Tunisian root-knot nematode (Meloidogyne incognita) populations. Arch Phytopathol Plant Protect 45(17):20–36

    Google Scholar 

  • Selim ME, El Zanaty AFM (2014) Discrimination of different pathogenic Fusarium oxysporum isolates based on virulence and intergenomic-spacer sequences (IGS). Int J Curr Microbiol App Sci 3(11):157–165

    Google Scholar 

  • Sharma HK, Kamra A, Panka J, Lal J, Kumar J (2008) Effect of seed treatment with Pseudomonas fluorescens alone and in combination with soil application of carbofuran and neem seed powder against Meloidogyne incognita in okra. Pestic Res, J Soc Pestic Sci India 20(1):79–82

    Google Scholar 

  • Song W, Zhou L, Yang C, Cao X, Zhang L, Liu X (2004) Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Prot 23:243–247

    CAS  Google Scholar 

  • Subramanian CV (1983) Hyphomycetes, 496 pp. Academic Press, London

    Google Scholar 

  • Talavera M, Verdejo-Lucas S, Ornat C, Torres J, Vela MD, Macias F et al (2009) Crop rotations with Mi gene resistant and susceptible tomato cultivars for management of root-knot nematodes in plastic-houses. Crop Prot 28:662–667

    Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    PubMed  Google Scholar 

  • Webb KM, Case AJ, Brick MA, Otto K, Schwartz HF (2013) Cross pathogenicity and vegetative compatibility of Fusarium oxysporum isolated from sugar beet. Plant Dis 97:1200–1206

    PubMed  Google Scholar 

  • Yong T, Yinshan C, Haoyu L, Anxiu K, Xiaoran L, Yunlin W, Xiuling J (2017) Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices. Microbiol Res 194:10–19

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the review editor and the anonymous reviewers for their helpful comments and suggestions to improve the clarity of the research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobna Hajji-Hedfi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajji-Hedfi, L., M’Hamdi-Boughalleb, N. & Horrigue-Raouani, N. Fungal diversity in rhizosphere of root-knot nematode infected tomatoes in Tunisia. Symbiosis 79, 171–181 (2019). https://doi.org/10.1007/s13199-019-00639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-019-00639-x

Keywords

Navigation