Skip to main content
Log in

Review of treatment methods to remove Wolbachia bacteria from arthropods

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Wolbachia are intracellular bacteria that infect numerous and diverse arthropod species including economic pests of crops and disease vectors affecting livestock and humans. Research on these symbionts has identified profound effects of Wolbachia on their hosts with possible application in pest control. Such research often requires methods to cure infections. To facilitate future research on these bacteria, we reviewed the Wolbachia literature to summarize results of 110 studies spanning 62 taxa that report on treatment methods and outcomes. Application of tetracycline in diet is the most common method and is typically successful. Rifampicin is secondarily used, and may be successful when tetracycline is not. Elevated temperatures can be used to eliminate infections, but is not often used. Rearing hosts under crowded conditions or starvation has been shown to reduce Wolbachia titre which affects maternal transmission. Application of treatment methods has a number of considerations with possible implications for the interpretation of data. This review is intended to alert the reader to treatment options and potential non-target effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abe J, Kamimura Y, Kondo N, Shimada M (2003) Extremely female-biased sex ratio and lethal male–male combat in a parasitoid wasp, Melittobia australica (Eulophidae). Behav Ecol 14(1):34–39. doi:10.1093/beheco/14.1.34

    Article  Google Scholar 

  • Ahmed M, Ren S-X, Xue X, Li X-X, Jin G-H, Qiu B-L (2010) Prevalence of endosymbionts in Bemisia tabaci populations and their in vivo sensitivity to antibiotics. Curr Microbiol 61(4):322–328. doi:10.1007/s00284-010-9614-5

    Article  PubMed  CAS  Google Scholar 

  • Albertson R, Tan V, Leads RR, Reyes M, Sullivan W, Casper-Lindley C (2013) Mapping Wolbachia distributions in the adult Drosophila brain. Cell Microbiol 15(9):1527–1544. doi:10.1111/cmi.12136

    Google Scholar 

  • Almeida Rd, Lenteren Jv, Stouthamer R (2010) Does Wolbachia infection affect Trichogramma atopovirilia behaviour? Braz J Biol 70:435–442. doi:10.1590/S1519-69842010005000016

  • Arakaki N, Miyoshi T, Noda H (2001) Wolbachia–mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc R Soc Lond Ser B Biol Sci 268(1471):1011–1016. doi:10.1098/rspb.2001.1628

    Article  CAS  Google Scholar 

  • Arakaki N, Noda H, Yamagishi K (2000) Wolbachia-induced parthenogenesis in the egg parasitoid Telenomus nawai. Entomol Exp Appl 96(2):177–184. doi:10.1046/j.1570-7458.2000.00693.x

  • Arthofer W, Riegler M, Avtzis DN, Stauffer C (2009) Evidence for low-titre infections in insect symbiosis: Wolbachia in the bark beetle Pityogenes chalcographus (Coleoptera, Scolytinae). Environ Microbiol 11(8):1923–1933. doi:10.1111/j.1462-2920.2009.01914.x

    Article  CAS  Google Scholar 

  • Awahmukalah DST, Brooks MA (1983) Reproduction of an inbred strain of Culex pipiens prevented by loss of Wolbachia pipientis. J Invertebr Pathol 41(2):184–190. doi:10.1016/0022-2011(83)90218-5

  • Baldo L, Prendini L, Corthals A, Werren J (2007) Wolbachia are present in Southern African scorpions and cluster with supergroup F. Curr Microbiol 55(5):367–373. doi:10.1007/s00284-007-9009-4

    Article  PubMed  CAS  Google Scholar 

  • Ballard JWO, Melvin RG (2007) Tetracycline treatment influences mitochondrial metabolism and mtDNA density two generations after treatment in Drosophila. vol 16. First published. doi:10.1111/j.1365-2583.2007.00760.x

  • Barr KL, Hearne LB, Briesacher S, Clark TL, Davis GE (2010) Microbial symbionts in insects influence down-regulation of defense genes in maize. PLoS ONE 5(6):e11339. doi:10.1371/journal.pone.0011339

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Baton LA, Pacidônio EC, Gonçalves DdS, Moreira LA (2013) wFlu: characterization and evaluation of a native Wolbachia from the mosquito Aedes fluviatilis as a potential vector control agent. PLoS ONE 8(3):e59619. doi:10.1371/journal.pone.0059619

  • Binnington KC, Hoffmann AA (1989) Wolbachia-like organisms and cytoplasmic incompatibility in Drosophila simulans. J Invertebr Pathol 54(3):344–352. doi:10.1016/0022-2011(89)90118-3

  • Bordenstein SR, Bordenstein SR (2011) Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS ONE 6(12):e29106. doi:10.1371/journal.pone.0029106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bouchon D, Rigaud T, Juchault P (1998) Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. Proc R Soc Lond Ser B Biol Sci 265(1401):1081–1090. doi:10.1098/rspb.1998.0402

    Article  CAS  Google Scholar 

  • Braig HR, Zhou W, Dobson SL, O’Neill SL (1998) Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol 180(9):2373–2378

    PubMed Central  PubMed  CAS  Google Scholar 

  • Breeuwer JAJ (1997) Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity 79(1):41–47. doi:10.1038/hdy.1997.121

  • Breeuwer JAJ, Werren JH (1990) Microorganismns associated with chromosome destruction and reproductive isolation between two insect species. Nature 346:558–560. doi:10.1038/346558a0

    Article  PubMed  CAS  Google Scholar 

  • Brelsfoard CL, Dobson SL (2011) Wolbachia effects on host fitness and the influence of male aging on cytoplasmic incompatibility in Aedes polynesiensis (Diptera: Culicidae). J Med Entomol 48(5):1008–1015. doi:10.1603/me10202

    Google Scholar 

  • Brennan LJ, Haukedal JA, Earle JC, Keddie B, Harris HL (2012) Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol Biol 21(5):510–520. doi:10.1111/j.1365-2583.2012.01155.x

  • Byers JR, Wilkes A (1970) A rickettsialike microorganism in Dahlbominus fuscipennis (zett.) (Hymenoptera, Eulophidae): observations on its occurrence and ultrastructure. Can J Zool 48(5):959–964

    Article  PubMed  CAS  Google Scholar 

  • Caragata EP, Rancès E, Hedges LM, Gofton AW, Johnson KN, O'Neill SL, McGraw EA (2013) Dietary cholesterol modulates pathogen blocking by Wolbachia. PLoS Pathog 9(6):e1003459. doi:10.1371/journal.ppat.1003459

  • Chen SJ, Lu F, Cheng JA, Jiang MX, Way MO (2012) Identification and biological role of the endosymbionts Wolbachia in rice water weevil (Coleoptera: Curculionidae). Environ Entomol 41(3):469–477. doi:10.1603/en11195

    Google Scholar 

  • Chen L, Zhu C, Zhang D (2013) Naturally occurring incompatibilities between different Culex pipiens pallens populations as the basis of potential mosquito control measures. PLoS Negl Trop Dis 7(1):e2030. doi:10.1371/journal.pntd.0002030

  • Clancy DJ, Hoffmann AA (1998) Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol Exp Appl 86(1):13–24. doi:10.1046/j.1570-7458.1998.00261.x

  • Cordaux R, Pichon S, Hatira HBA, Doublet V, Grève P, Marcadé I, Braquart-Varnier C, Souty-Grosset C, Charfi-Cheikhrouha F, Bouchon D (2012) Widespread Wolbachia infection in terrestrial isopods and other crustaceans. ZooKeys 176(SPECIAL ISSUE):123–131. doi:10.3897/zookeys.176.2284

    Article  PubMed  Google Scholar 

  • Crain PR (2013) Putting theory into practice: predicting the invasion and stability of Wolbachia using simulation models and empirical studies. Dissertation, University of Kentucky

  • Dean JL, Dobson SL (2004) Characterization of Wolbachia infections and interspecific crosses of Aedes (Stegomyia) polynesiensis and Ae. (Stegomyia) riversi (Diptera: Culicidae). J Med Entomol 41(5):894–900. doi:10.1603/0022-2585-41.5.894

  • Dedeine F, Bouletreau M, Vavre F (2005) Wolbachia requirement for oogenesis: occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A. tabida. Heredity 95(5):394–400. doi:10.1038/sj.hdy.6800739

    Google Scholar 

  • Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Boulétreau M (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci 98(11):6247–6252. doi:10.1073/pnas.101304298

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dobson SL, Rattanadechakul W (2001) A novel technique for removing Wolbachia infections from Aedes albopictus (Diptera: Culicidae). J Med Entomol 38(6):844–849. doi:10.1603/0022-2585-38.6.844

    Article  PubMed  CAS  Google Scholar 

  • Dong P, Wang J-J, Zhao Z-M (2006) Infection by Wolbachia bacteria and its influence on the reproduction of the stored-product psocid, Liposcelis tricolor. J Insect Sci 6(24):1–7. doi:10.1673/2006_06_24.1

    Article  PubMed  Google Scholar 

  • Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, Aksoy E, Dalaperas S, Abd-Alla A, Ouma J, Takac P, Aksoy S, Bourtzis K (2012) Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiol 12(Suppl 1):S3

    Google Scholar 

  • Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstadter J, Hurst G (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6(1):27. doi:10.1186/1741-7007-6-27

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dutton TJ, Sinkins SP (2005) Filarial susceptibility and effects of Wolbachia in Aedes pseudoscutellaris mosquitoes. Med Vet Entomol 19(1):60–65. doi:10.1111/j.0269-283X.2005.00557.x

  • Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40(1):127–149. doi:10.1146/annurev.ecolsys.110308.120206

    Article  Google Scholar 

  • Enigl M, Zchori-Fein E, Schausberger P (2005) Negative evidence of Wolbachia in the predaceous mite Phytoseiulus persimilis. Exp Appl Acarol 36(4):249–262. doi:10.1007/s10493-005-6075-9

    Article  PubMed  CAS  Google Scholar 

  • Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36(5):533–543. doi:10.1111/j.1365-2311.2011.01318.x

    Article  Google Scholar 

  • Floate KD, Coghlin P (2010) No support for fluctuating asymmetry as a biomarker of chemical residues in livestock dung. Can Entomol 142:353–368

    Article  Google Scholar 

  • Floate KD, Kyei-Poku GK, Coghlin PC (2006) Overview and relevance of Wolbachia bacteria in biocontrol research. Biocontrol Sci Tech 16(8):767–788. doi:10.1080/09583150600699606

    Article  Google Scholar 

  • Fry AJ, Palmer MR, Rand DM (2004) Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity 93(4):379–389. doi:10.1038/sj.hdy.6800514

    Google Scholar 

  • Gazla I, Carracedo M (2011) Wolbachia induces sexual isolation in Drosophila melanogaster and Drosophila simulans. Open J Genet 1:18–26. doi:10.4236/ojgen.2011.12005

  • Giordano R, Jackson JJ, Robertson HM (1997) The role of Wolbachia bacteria in reproductive incompatibilities and hybrid zones of Diabrotica beetles and Gryllus crickets. Proc Natl Acad Sci 94(21):11439–11444

    Google Scholar 

  • Giordano R, Weber E, Waite J, Bencivenga N, Krogh PH, Soto-Adames F (2010) Effect of a high dose of three antibiotics on the reproduction of a parthenogenetic strain of Folsomia candida (Isotomidae: Collembola). Environ Entomol 39(4):1170–1177. doi:10.1603/en10027

    Article  PubMed  CAS  Google Scholar 

  • Giorgini M (2001) Induction of males in thelytokous populations of Encarsia meritoria and Encarsia protransvena: a systematic tool. BioControl 46(4):427–438. doi:10.1023/a:1014181431482

  • Giorgini M, Monti MM, Caprio E, Stouthamer R, Hunter MS (2009) Feminization and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity 102(4):365–371

    Article  PubMed  CAS  Google Scholar 

  • Gomi K, Gotoh T, Noda H (1997) Wolbachia having no effect on reproductive incompatibility in Tetranychus kanzawai KISHIDA (Acari: Tetranychidae). Appl Entomol Zool 32(3):485–490

    Google Scholar 

  • Gotoh T, Noda H, Fujita T, Iwadate K, Higo Y, Saito S, Ohtsuka S (2005) Wolbachia and nuclear-nuclear interactions contribute to reproductive incompatibility in the spider mite Panonychus mori (Acari: Tetranychidae). Heredity 94(2):237–246, http://www.nature.com/hdy/journal/v94/n2/suppinfo/6800605s1.html

    Article  PubMed  CAS  Google Scholar 

  • Graham RI, Grzywacz D, Mushobozi WL, Wilson K (2012) Wolbachia in a major African crop pest increases susceptibility to viral disease rather than protects. Ecol Lett 15(9):993–1000. doi:10.1111/j.1461-0248.2012.01820.x

    Google Scholar 

  • Grenier S, Gomes SM, Pintureau B, Lassablière F, Bolland P (2002) Use of tetracycline in larval diet to study the effect of Wolbachia on host fecundity and clarify taxonomic status of Trichogramma species in cured bisexual lines. J Invertebr Pathol 80(1):13–21. doi:10.1016/S0022-2011(02)00039-3

  • Gueguen G, Onemola B, Govind S (2012) Association and effects of a new strain of Wolbachia on Leptopilina victoriae, a virulent parasitic wasp of Drosophila spp. Appl Environ Microbiol. doi:10.1128/aem.01058-12

  • Guruprasad NM, Mouton L, Puttaraju HP (2011) Effect of Wolbachia infection and temperature variations on the fecundity of the Uzifly Exorista sorbillans (Diptera: Tachinidae). Symbiosis 54(3):151–158. doi:10.1007/s13199-011-0138-y

    Article  Google Scholar 

  • Harcombe W, Hoffmann AA (2004) Wolbachia effects in Drosophila melanogaster: in search of fitness benefits. J Invertebr Pathol 87(1):45–50. doi:10.1016/j.jip.2004.07.003

    Google Scholar 

  • Heddi A, Grenier A-M, Khatchadourian C, Charles H, Nardon P (1999) Four intracellular genomes direct weevil biology: nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proc Natl Acad Sci 96(12):6814–6819. doi:10.1073/pnas.96.12.6814

  • Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia?—a statistical analysis of current data. FEMS Microbiol Lett 281(2):215–220. doi:10.1111/j.1574-6968.2008.01110.x

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hiroki M, Kato Y, Kamito T, Miura K (2002) Feminization of genetic males by a symbiotic bacterium in a butterfly, Eurema hecabe (Lepidoptera: Pieridae). Naturwissenschaften 89(4):167–170

    Google Scholar 

  • Hoffmann AA (1988) Partial cytoplasmic incompatibility between two Australian populations of Drosophila melanogaster. Entomol Exp Appl 48(1):61–67. doi:10.1111/j.1570-7458.1988.tb02299.x

    Article  Google Scholar 

  • Hoffmann AA, Turelli M (1988) Unidirectional incompatibility in Drosophila simulans: inheritance, geographic variation and fitness effects. Genetics 119:435–444

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hoffmann AA, Turelli M, Simmons GM (1986) Unidirectional incompatibility between populations of Drosophila simulans. Evolution 40(4):692–701. doi:10.2307/2408456

    Article  Google Scholar 

  • Holden PR, Jones P, Brookfield JF (1993) Evidence for a Wolbachia symbiont in Drosophila melanogaster. Genet Res 62(1):23–29. doi:10.1017/S0016672300031529

    Google Scholar 

  • Hong XY, Gotoh T, Nagata T (2002) Vertical transmission of Wolbachia in Tetranychus kanzawai Kishida and Panonychus mori Yokoyama (Acari: Tetranychidae). Heredity 88(3):190–196. doi:10.1038/sj.hdy.6800026

    Article  PubMed  Google Scholar 

  • Hunter MS, Perlman SJ, Kelly SE (2003) A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc Lond Ser B Biol Sci 270(1529):2185–2190. doi:10.1098/rspb.2003.2475

  • Jamnongluk W, Kittayapong P, Baisley KJ, O'Neill SL (2000) Wolbachia infection and expression of cytoplasmic incompatibility in Armigeres subalbatus (Diptera: Culicidae). J Med Entomol 37(1):53–57. doi:10.1603/0022-2585-37.1.53

  • Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76 % of sixty-three arthropod species. Insect Mol Biol 9(4):393–405. doi:10.1046/j.1365-2583.2000.00203.x

    Article  PubMed  CAS  Google Scholar 

  • Jia FX, Yang MS, Yang WJ, Wang JJ (2009) Influence of continuous high temperature conditions on Wolbachia infection frequency and the fitness of Liposcelis tricolor (Psocoptera: Liposcelididae). Environ Entomol 38(5):1365–1372. doi:10.1603/022.038.0503

    Google Scholar 

  • Kageyama D, Nishimura G, Hoshizaki S, Ishikawa Y (2002) Feminizing Wolbachia in an insect, Ostrinia furnacalis (Lepidoptera: Crambidae). Heredity 88(6):444–449. doi:10.1038/sj.hdy.6800077

  • Kageyama D, Nishimura G, Hoshizaki S, Ishikawa Y (2003a) Two kinds of sex ratio distorters in a moth, Ostrinia scapulalis. Genome 46(6):974–982. doi:10.1139/g03-083

  • Kageyama D, Ohno S, Hoshizaki S, Ishikawa Y (2003b) Sexual mosaics induced by tetracycline treatment in the Wolbachia-infected adzuki bean borer, Ostrinia scapulalis. Genome 46(6):983–989. doi:10.1139/g03-082

    Article  PubMed  CAS  Google Scholar 

  • Kautz S, Rubin BER, Moreau CS (2013) Bacterial infections across the ants: frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche 2013(Article ID 936341):11. doi:10.1155/2013/936341

    Google Scholar 

  • Kellen WR, Hoffmann DF, Kwock RA (1981) Wolbachia sp. (Rickettsiales: Rickettsiaceae) a symbiont of the almond moth, Ephestia cautella: ultrastructure and influence on host fertility. J Invertebr Pathol 37(3):273–283. doi:10.1016/0022-2011(81)90087-2

    Article  Google Scholar 

  • Klostermeyer LE (1978) Eastern and western alfalfa weevils, Hypera postica (Gyllenhal): Distribution in Nebraska determined by cross-matings (Coleoptera: Curculionidae). Dissertation, UnivNebr, Lincoln

  • Koukou K, Pavlikaki H, Kilias G, Werren JH, Bourtzis K, Alahiotis SN (2006) Influence of antibiotic treatment and Wolbachia curing on sexual isolation among Drosophila melanogaster cage populations. Evolution 60(1):87–96. doi:10.2307/4095264

    Google Scholar 

  • Kremer N, Charif D, Henri H, Gavory F, Wincker P, Mavingui P, Vavre F (2012) Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiol 12(Suppl 1):S7. doi:10.1186/1471-2180-12-S1-S7

  • Kyei-Poku GK, Floate KD, Benkel B, Goettel MS (2003) Elimination of Wolbachia from Urolepis rufipes (Hymenoptera: Pteromalidae) with heat and antibiotic treatments: implications for host reproduction. Biocontrol Sci Tech 13:341–354. doi:10.1080/0958315031000110355

    Article  Google Scholar 

  • Kyei-Poku GK, Colwell DD, Coghlin P, Benkel B, Floate KD (2005) On the ubiquity and phylogeny of Wolbachia in lice. Mol Ecol 14(1):285–294. doi:10.1111/j.1365-294X.2004.02409.x

    Article  PubMed  CAS  Google Scholar 

  • Min K-T, Benzer S (1997) Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A 94(20):10792–10796. doi:10.1073/pnas.94.20.10792

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mochiah MB, Ngi-Song AJ, Overholt WA, Stouthamer R (2002) Wolbachia infection in Cotesia sesamiae (Hymenoptera: Braconidae) causes cytoplasmic incompatibility: implications for biological control. Biol Control 25(1):74–80. doi:10.1016/s1049-9644(02)00045-2

    Article  Google Scholar 

  • Morimoto S, Kurtti T, Noda H (2006) In vitro cultivation and antibiotic susceptibility of a Cytophaga-like intracellular symbiote isolated from the tick Ixodes scapularis. Curr Microbiol 52(4):324–329. doi:10.1007/s00284-005-0349-7

    Article  PubMed  CAS  Google Scholar 

  • Mouton L, Henri H, Bouletreau M, Vavre F (2003) Strain-specific regulation of intracellular Wolbachia density in multiply infected insects. Mol Ecol 12(12):3459–3465. doi:10.1046/j.1365-294X.2003.02015.x

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Yukuhiro F, Matsumura M, Noda H (2012) Cytoplasmic incompatibility involving Cardinium and Wolbachia in the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool 47(3):273–283. doi:10.1007/s13355-012-0120-z

  • Noda H, Koizumi Y, Zhang Q, Deng K (2001) Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol 31(6–7):727–737. doi:10.1016/S0965-1748(00)00180-6

    Article  PubMed  CAS  Google Scholar 

  • Otsuka Y, Takaoka H (1997) Elimination of Wolbachia pipientis from Aedes albopictus. Med Entomol Zool 48(3):257–260

    CAS  Google Scholar 

  • Pijls JWAM, van Steenbergen HJ, van Alphen JJM (1996) Asexuality cured: the relations and differences between sexual and asexual Apoanagyrus diversicornis. Heredity 76(5):506–513. doi:10.1038/hdy.1996.73

    Article  Google Scholar 

  • Pike N, Kingcombe R (2009) Antibiotic treatment leads to the elimination of Wolbachia endosymbionts and sterility in the diplodiploid collembolan Folsomia candida. BMC Biol 7:54. doi:10.1186/1741-7007-7-54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Plichart C, Legrand AM (2005) Detection and characterization of Wolbachia infections in Wuchereria bancrofti (Spirurida: Onchocercidae) var. pacifica and Aedes (Stegomyia) polynesiensis (Diptera: Culicidae). Am J Trop Med Hyg 73(2):354–358

    Google Scholar 

  • Poinsot D, Merçot H (1997) Wolbachia infection in Drosophila simulans: does the female host bear a physiological cost? Evolution 51(1):180–186. doi:10.2307/2410971

  • Puttaraju HP, Prakash BM (2005) Wolbachia and reproductive conflict in Exorista sorbillans. Arch Insect Biochem Physiol 60(4):230–235. doi:10.1002/arch.20069

  • Rasgon JL, Scott TW (2003) Wolbachia and cytoplasmic incompatibility in the California Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations. Genetics 165(4):2029–2038

    PubMed Central  PubMed  Google Scholar 

  • Reynolds KT, Thomson LJ, Hoffmann AA (2003) The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster. Genetics 164(3):1027–1034

    Google Scholar 

  • Richardson PM, Holmes WP, Saul GBI (1987) The effect of tetracycline on reciprocal cross incompatibility in Mormoniella [=Nasonia] vitripennis. J Invertebr Pathol 50:176–183

    Article  CAS  Google Scholar 

  • Rogina B, Helfand SL (2013) Indy mutations and Drosophila longevity. Front Genet. doi:10.3389/fgene.2013.00047

  • Rowley SM, Raven RJ, McGraw EA (2004) Wolbachia pipientis in Australian spiders. Curr Microbiol 49(3):208–214. doi:10.1007/s00284-004-4346-z

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Kubo T, Ishikawa H (2002) Interspecific transfer of Wolbachia between two lepidopteran insects expressing cytoplasmic incompatibility: a Wolbachia variant naturally infecting Cadra cautella causes male killing in Ephestia kuehniella. Genetics 162(3):1313–1319

    Google Scholar 

  • Schidlo NS, Pannebakker BA, Zwaan BJ, Beukeboom LW, Van Alphen JJM (2002) Curing thelytoky in the Drosophila parasitoid Leptopilina clavipes (Hymenoptera:Figitidae). Proc Exp Appl Entomol Neth Entomol Soc 13:93–96

    Google Scholar 

  • Schneider DI, Garschall KI, Parker AG, Abd-Alla AMM, Miller WJ (2013) Global Wolbachia prevalence, titer fluctuations and their potential of causing cytoplasmic incompatibilities in tsetse flies and hybrids of Glossina morsitans subgroup species. J Invertebr Pathol 112(Supplement 1 (0)):S104–S115. doi:10.1016/j.jip.2012.03.024

    Article  PubMed Central  PubMed  Google Scholar 

  • Silva N, Guenther L, Xie J, Mateos M (2012) Infection densities of three Spiroplasma strains in the host Drosophila melanogaster. Symbiosis 57(2):83–93. doi:10.1007/s13199-012-0181-3

    Article  Google Scholar 

  • Sinkins SP, Braig HR, O’Neill SL (1995) Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc Biol Sci 261(1362):325–330

    Article  PubMed  CAS  Google Scholar 

  • Stevens L (1989) Environmental factors affecting reproductive incompatibility in flour beetles, genus Tribolium. J Invertebr Pathol 53(1):78–84. doi:10.1016/0022-2011(89)90076-1

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer R, Mak F (2002) Influence of antibiotics on the offspring production of the Wolbachia-infected parthenogenetic parasitoid Encarsia formosa. J Invertebr Pathol 80(1):41–45. doi:10.1016/S0022-2011(02)00034-4

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer R, Luck RF, Hamilton WD (1990) Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc Natl Acad Sci 87(7):2424–2427. doi:10.1073/pnas.87.7.2424

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Strunov A, Kiseleva E, Gottlieb Y (2013) Spatial and temporal distribution of pathogenic Wolbachia strain wMelPop in Drosophila melanogaster central nervous system under different temperature conditions. J Invertebr Pathol 114(1):22–30. doi:10.1016/j.jip.2013.05.001

    Article  PubMed  Google Scholar 

  • Suenaga O (1993) Treatment of Wolbachia pipientis infection with tetracycline hydrochloride and the change of cytoplasmic incompatibility in a Nagasaki strain of Culex pipiens molestus. Trop Med 35(3):105–110

    Google Scholar 

  • Sugimoto TN, Fujii T, Kayukawa T, Sakamoto H, Ishikawa Y (2010) Expression of a doublesex homologue is altered in sexual mosaics of Ostrinia scapulalis moths infected with Wolbachia. Insect Biochem Mol Biol 40(12):847–854. doi:10.1016/j.ibmb.2010.08.004

  • Taylor MJ, Bandi C, Hoerauf A (2005) Wolbachia bacterial endosymbionts of filarial nematodes. In: JR Baker RM, Rollinson D (eds) Advances in parasitology, vol 60. Academic Press, pp 245–284. doi:10.1016/S0065-308X(05)60004-8

  • Timmermans MTN, Ellers J (2009) Wolbachia endosymbiont is essential for egg hatching in a parthenogenetic arthropod. Evol Ecol 23(6):931–942. doi:10.1007/s10682-008-9282-0

    Article  Google Scholar 

  • Van Opijnen T, Breeuwer JAJ (1999) High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite. Exp Appl Acarol 23(11):871–881. doi:10.1023/a:1006363604916

    Article  PubMed  Google Scholar 

  • Vavre F, Fleury F, Varaldi J, Fouillet P, Boulétreau M (2000) Evidence for female mortality in Wolbachia-mediated cytoplasmic incompatibility in haplodiploid insects: epidemiologic and evolutionary consequences. Evol Int J Org Evol 54(1):191–200

    CAS  Google Scholar 

  • Wade MJ, Stevens L (1985) Microorganism mediated reproductive isolation in flour beetles (genus Tribolium). Science 227(4686):527–528. doi:10.1126/science.3966160

    Article  PubMed  CAS  Google Scholar 

  • Wang PY, Neretti N, Whitaker R, Hosier S, Chang C, Lu D, Rogina B, Helfand SL (2009) Long-lived Indy and calorie restriction interact to extend life span. Proc Natl Acad Sci 106(23):9262–9267. doi:10.1073/pnas.0904115106

    Article  PubMed Central  PubMed  Google Scholar 

  • Weeks AR, Breeuwer JAJ (2001) Wolbachia–induced parthenogenesis in a genus of phytophagous mites. Proc R Soc Lond Ser B Biol Sci 268(1482):2245–2251. doi:10.1098/rspb.2001.1797

    Article  CAS  Google Scholar 

  • Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292(5526):2479–2482. doi:10.1126/science.1060411

    Article  PubMed  CAS  Google Scholar 

  • Weeks AR, Turelli M, Harcombe WR, Reynolds KT, Hoffmann AA (2007) From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol 5(5):e114. doi:10.1371/journal.pbio.0050114

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  PubMed  CAS  Google Scholar 

  • Werren JH, Windsor D, Guo L (1995) Distribution of Wolbachia among neotropical arthropods. Proc R Soc Lond Ser B Biol Sci 262(1364):197–204. doi:10.1098/rspb.1995.0196

    Article  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741–751. doi:10.1038/nrmicro1969

    Article  PubMed  CAS  Google Scholar 

  • White JA (2011) Caught in the act: rapid, symbiont-driven evolution. Bioessays 33(11):823–829. doi:10.1002/bies.201100095

    Article  PubMed  CAS  Google Scholar 

  • White JA, Kelly SE, Perlman SJ, Hunter MS (2009) Cytoplasmic incompatibility in the parasitic wasp Encarsia inaron: disentangling the roles of Cardinium and Wolbachia symbionts. Heredity 102(5):483–489. doi:10.1038/hdy.2009.5

    Article  PubMed  CAS  Google Scholar 

  • Wiwatanaratanabutr S, Kittayapong P (2006) Effects of temephos and temperature on Wolbachia load and life history traits of Aedes albopictus. Med Vet Entomol 20(3):300–307. doi:10.1111/j.1365-2915.2006.00640.x

  • Wiwatanaratanabutr I, Kittayapong P (2009) Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus. J Invertebr Pathol 102(3):220–224. doi:10.1016/j.jip.2009.08.009

    Article  PubMed  Google Scholar 

  • Wright JD, Wang B-T (1980) Observations on wolbachiae in mosquitoes. J Invertebr Pathol 35(2):200–208. doi:10.1016/0022-2011(80)90185-8

    Article  Google Scholar 

  • Yamada R, Floate KD, Riegler M, O’Neill SL (2007) Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. vol 177. First published. doi:10.1534/genetics.106.068486

  • Yen JH, Barr AR (1973) The etiological agent of cytoplasmic incompatibility in Culex pipens. J Invertebr Pathol 22:242–250. doi:10.1016/0022-2011(73)90141-9

    Article  PubMed  CAS  Google Scholar 

  • Zchori-Fein E, Faktor O, Zeidan M, Gottlieb Y, Czosnek H, Rosen D (1995) Parthenogenesis-inducing microorganisms in Aphytis (Hymenoptera: Aphelinidae). Insect Mol Biol 4(3):173–178

    Article  PubMed  CAS  Google Scholar 

  • Zchori-Fein E, Gottlieb Y, Coll M (2000) Wolbachia density and host fitness components in Muscidifurax uniraptor (Hymenoptera: Pteromalidae). J Invertebr Pathol 75(4):267–272

    Article  PubMed  CAS  Google Scholar 

  • Zchori-Fein E, Gottlieb Y, Kelly SE, Brown JK, Wilson JM, Karr TL, Hunter MS (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoid wasps. Proc Natl Acad Sci U S A 98(22):12555–12560

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zchori-Fein E, Perlman SJ, Kelly SE, Katzir N, Hunter MS (2004) Characterization of a ‘Bacteroidetes’ symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of ‘Candidatus Cardinium hertigii’. Int J Syst Evol Microbiol 54(Pt 3):961–968

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Li Z-X (2013) Influences of tetracycline on the reproduction of the B biotype of Bemisia tabaci (Homoptera: Aleyrodidae). Appl Entomol Zool 48:1–6. doi:10.1007/s13355-013-0180-8

    Google Scholar 

  • Zhu LY, Zhang KJ, Zhang YK, Ge C, Gotoh T, Hong XY (2012) Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus piercei McGregor. Curr Microbiol 65(5):516–523. doi:10.1007/s00284-012-0190-8

    Article  PubMed  CAS  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735. doi:10.1111/j.1574-6976.2008.00123.x

    Article  PubMed  CAS  Google Scholar 

  • Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40 % of terrestrial arthropod species are infected. PLoS ONE 7(6):e38544. doi:10.1371/journal.pone.0038544

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Agriculture and Agri-Food Canada and the Chinese Ministry of Education for providing Y. Li the opportunity to work at the Lethbridge Research Centre (LRC). We also thank Paul C. Coghlin (LRC) for his guidance and continuous encouragement through this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.-P. Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YY., Floate, K.D., Fields, P.G. et al. Review of treatment methods to remove Wolbachia bacteria from arthropods. Symbiosis 62, 1–15 (2014). https://doi.org/10.1007/s13199-014-0267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0267-1

Keywords

Navigation