Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks

Abstract

Advanced scientific knowledge on arbuscular mycorrhizal symbioses recently enhanced potential for implementation of mycorrhizal biotechnology in horticulture and agriculture plant production, landscaping, phytoremediation and other segments of the plant market. The advances consist in significant findings regarding:—new molecular detection tools for tracing inoculated fungi in the field;—the coexistence mechanisms of various fungi in the single root system;—new knowledge on in vitro physiology of the AM fungi grown in root organ cultures;—mechanisms of synergistic interactions with other microbes like PGPR or saprotrophic fungi; discovery of mycorrhiza supportive compounds such as strigolactones. Scientific knowledge has been followed by technological developments like novel formulations for liquid applications or seed coating, mycorrhiza stimulating compounds or new application modes. Still the missing components of biotechnology are appropriate, cheap, highly reproducible and effective methods for inocula purity testing and quality control. Also there is a weak traceability of the origin of the mycorrhizal fungi strains used in commercial inocula. Numerous poor quality products can still be found on the markets claiming effective formation mycorrhiza which have very low capacity to do so. These products usually rely in their effects on plant growth not on support of host plants via formation of effective mycorrhizal symbiosis but on fertilizing compounds added to products. There is growing number of enterprises producing mycorrhiza based inocula recently not only in developed world but increasingly in emerging markets. Also collaboration between private sector and scientific community has an improving trend as the development of private sector can fuel further research activities. Last but not least there is apparent growing pull of the market and increasing tendency of reduction of agrochemical inputs and employment of alternative strategies in planting and plant production. These circumstances support further developments of mycorrhizal inocula production and applications and maturation of the industry.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Adholeya A (2012) Development and testing of mycorrhiza in multi-location field trials for improved crop yield under different cultivation systems and soils. In: Book of Abstracts, 7th International Symbiosis Society Congress (The earth’s vast symbiosphere, July 22–28, 2012), Kraków, Poland, p 254.

  2. Albrechtova J, Latr A, Nedorost L, Pokluda R, Posta K, Vosatka M (2012) Dual Inoculation with Mycorrhizal and Saprotrophic Fungi Applicable in Sustainable Cultivation Improves the Yield and Nutritive Value of Onion. Sci World J. doi:10.1100/2012/374091

  3. Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285. doi:10.1016/j.ecolecon.2007.03.004

    Article  Google Scholar 

  4. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120. doi:10.1016/j.jenvman.2012.04.002

    PubMed  Article  CAS  Google Scholar 

  5. Bunemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms—a review. Aust J Soil Res 44:379–406. doi:10.1071/SR05125

    Article  Google Scholar 

  6. Camprubi A, Calvet C, Estaun V (1995) Growth enhancement of Citrus reshni after inoculation with Glomus intraradices and Trichoderma aureoviride and associated effects on microbial populations and enzyme activity in potting mixes. Plant Soil 173:233–238, View at Scopus

    Article  CAS  Google Scholar 

  7. Caravaca F, Hernandez T, Garcia C, Roldan A (2002) Improvement of rhizosphere aggregate stability of afforested semiarid plant species subjected to mycorrhizal inoculation and compost addition. Geoderma 108:133–144. doi:10.1016/S0016-7061(02)00130-1

    Article  CAS  Google Scholar 

  8. Cipollini D, Rigsby CM, Barto EK (2012) Microbes as targets and mediators of allelopathy in plants. J Chem Ecol 38:714–727. doi:10.1007/s10886-012-0133-7

    PubMed  Article  CAS  Google Scholar 

  9. De Smet I, White PJ, Bengough AG, Dupuy L, Parizot B, Casimiro I, Heidstra R, Laskowski M, Lepetit M, Hochholdinger F, Draye X, Zhang HM, Broadley MR, Peret B, Hammond JP, Fukaki H, Mooney S, Lynch JP, Nacry P, Schurr U, Laplaze L, Benfey P, Beeckman T, Bennett M (2012) Analyzing lateral root development: how to move forward. Plant Cell 24:15–20. doi:10.1105/tpc.111.094292

    PubMed  Article  Google Scholar 

  10. Declerck S, Strullu DG, Fortin JA (eds) (2005) In vitro culture of mycorrhizas. Springer, Heidelberg, p 388. ISBN 9783540240273

    Google Scholar 

  11. Declerck S, Cranenbrouck S, Ijdo M (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16. doi:10.1007/s00572-010-0337-z

    PubMed  Article  Google Scholar 

  12. Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15:600–607. doi:10.1016/j.tplants.2010.08.009

    Article  Google Scholar 

  13. Douds DD, Lee J, Rogers L, Lohman ME, Pinzon N, Ganser S (2012) Utilization of inoculum of AM fungi produced on-farm for the production of Capsicum annuum: a summary of seven years of field trials on a conventional vegetable farm. Biol Agric Hortic 28:129–145. doi:10.1080/01448765.2012.693362

    Article  Google Scholar 

  14. Feldmann F, Schneider C (2008) How to produce arbuscular mycorrhizal inoculum with desired characteristics. In: Feldmann F, Kapulnik Y, Baar J (eds) Mycorrhiza Works. Deutsche Phytomedizinische Gesellschaft, Braunschweig, pp 292–310. ISBN 978-3-941261-01-3

    Google Scholar 

  15. Fernandez-Aparicio M, Westwood JH, Rubiales D (2011) Agronomic, breeding, and biotechnological approaches to parasitic plant management through manipulation of germination stimulant levels in agricultural soils. Botany 89:813–826. doi:10.1139/B11-075

    Article  Google Scholar 

  16. Gianinazzi S, Gianinazzi-Pearson V (1988) Mycorrhizae: a plant’s healt insurance. Chimica Oggi, Octobre, 56–58

  17. Gianinazzi S, Vosatka M (2003) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271. doi:10.1139/B04-072

    Article  Google Scholar 

  18. Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. doi:10.1007/s00572-010-0333-3

    PubMed  Article  Google Scholar 

  19. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35. doi:10.1016/j.agee.2005.09.009

    Article  Google Scholar 

  20. Gryndler M, Vosátka M, Hršelová H, Catská V, Chvátalová I, Jansa J (2002) Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J Plant Nutr 25:1341–1358. doi:10.1081/PLN-120004393

    Article  CAS  Google Scholar 

  21. Hao Z, Fayolle L, van Tuinen D, Chatagnier O, Gianinazzi S, Li X, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672. doi:10.1093/jxb/ers046

    PubMed  Article  CAS  Google Scholar 

  22. Harrier LA, Watson CA (2003) The role of arbuscular mycorrhizal fungi in sustainable cropping systems. Adv Agron 79:185–225. doi:10.1016/S0065-2113(02)79004-4

  23. Hernadi I, Sasvari Z, Albrechtova J, Vosatka M, Posta K (2012) Arbuscular mycorrhizal inoculant increases yield of spice pepper and affects the indigenous fungal community in the field. Hortscience 47:603–606

    Google Scholar 

  24. Hetrick B, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat-varieties, landraces, and ancestors. Can J Bot 70:2032–2040

    Article  Google Scholar 

  25. Hinsinger P, Brauman A, Devau N, Gerard F, Jourdan C, Laclau JP, Le Cadre E, Jaillard B, Plassard C (2011) Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 348:29–61. doi:10.1007/s11104-011-0903y

    Article  CAS  Google Scholar 

  26. Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91. doi:10.1007/s00572-006-0094-1

    PubMed  Article  Google Scholar 

  27. Janoušková M, Krak K, Caklová P, Vosátka M, Štorchová H (2012) Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of Mitochondrial DNA. Appl Environ Microbiol 78:3630–3637. doi:10.1128/AEM.00035-12

    PubMed  Article  Google Scholar 

  28. Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16. doi:10.1007/s00374-002-0546-5

    Google Scholar 

  29. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664. doi:10.1007/s10886-012-0134-6

    PubMed  Article  CAS  Google Scholar 

  30. Kasuya MCM, Costa MD (2009) Abstracts, ICOM6, 6th International Conference on Mycorrhiza “Beyond the Roots”, 9–14 August 2009, Bell Horizonte, Brazil.

  31. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822. doi:10.1038/35093585

    PubMed  Article  CAS  Google Scholar 

  32. Kohlen W, Ruyter-Spira C, Bouwmeester HJ (2011) Strigolactones: a new musician in the orchestra of plant hormones. Botany 89:827–840. doi:10.1139/B11-063

    Article  CAS  Google Scholar 

  33. Lehmann A, Barto EK, Powell JR, Rillig MC (2012) Mycorrhizal responsiveness trends in annual crop plants and their wild relatives-a meta-analysis on studies from 1981 to 2010. Plant Soil 355:231–250. doi:10.1007/s11104-011-1095-1

    Article  CAS  Google Scholar 

  34. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512. doi:10.1071/BT06118

    Article  Google Scholar 

  35. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–U1501. doi:10.1038/nature09622

    PubMed  Article  CAS  Google Scholar 

  36. Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42:741–775. doi:10.1080/10643389.2010.528518

    Article  CAS  Google Scholar 

  37. Miransari M (2011a) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653. doi:10.1016/j.biotechadv.2011.04.006

    PubMed  Article  CAS  Google Scholar 

  38. Miransari M (2011b) Soil microbes and plant fertilization. Appl Microbiol Biotechnol 92:875–885. doi:10.1007/s00253-011-3521-y

    PubMed  Article  CAS  Google Scholar 

  39. Oehl F, Sieverding E, Mader P, Sieverding E, Mader P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583. doi:10.1007/s00442-003-1458-2

    PubMed  Article  Google Scholar 

  40. Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283. doi:10.1111/j.1469-8137.2004.01235.x

    PubMed  Article  Google Scholar 

  41. Opik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437. doi:10.1111/j.1469-8137.2009.02920.x

    PubMed  Article  CAS  Google Scholar 

  42. Pellegrino E, Turrini A, Gamper HA, Cafa G, Bonari E, Young JPW, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822. doi:10.1111/j.1469-8137.2012.04090.x

    PubMed  Article  CAS  Google Scholar 

  43. Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J Agric Food Chem 56:3538–3545. doi:10.1021/jf073337u

    PubMed  Article  CAS  Google Scholar 

  44. Pimentel D (1996) Green revolution agriculture and chemical hazards. Sci Total Environ 188(Suppl 1):S86–S98. doi:10.1016/0048-9697(96)05280-1

    PubMed  Article  CAS  Google Scholar 

  45. Piotrowski JS, Denich T, Klironomos JN, Graham JM, Rillig MC (2004) The effects of arbuscular mycorrhizas on soil aggregation depend on the interaction between plant and fungal species. New Phytol 164:365–373. doi:10.1111/j.1469-8137.2004.01181.x

    Article  Google Scholar 

  46. Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Article  Google Scholar 

  47. Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  48. Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasse RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    PubMed  Article  CAS  Google Scholar 

  49. Rowe HI, Brown CS, Claassen VP (2007) Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restor Ecol 15:44–52. doi:10.1111/j.1526-100X.2006.00188.x

    Article  Google Scholar 

  50. Sawers RJH, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an Ancient symbiosis in Modern Agriculture. Trends Plant Sci 13:93–97. doi:10.1016/j.tplants.2007.11.006

    PubMed  Article  CAS  Google Scholar 

  51. Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515. doi:10.1111/j.1461-0248.2006.00910.x

    PubMed  Article  Google Scholar 

  52. Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for eco-logical success and protection of plants. C R Biol 327:639–648. doi:10.1016/j.crvi.2003.12.008

    PubMed  Article  Google Scholar 

  53. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  54. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250. doi:10.1146/annurev-arplant-042110-103846

    PubMed  Article  CAS  Google Scholar 

  55. Sykorova Z, Borstler B, Zvolenska S, Fehrer J, Gryndler M, Vosatka M, Redecker D (2012) Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22:69–80. doi:10.1007/s00572-011-0375-1

    PubMed  Article  CAS  Google Scholar 

  56. Tarbell TJ, Koske RE (2007) Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 18:51–56. doi:10.1007/s00572-007-0152-3

    PubMed  Article  CAS  Google Scholar 

  57. Tchameni SN, Ngonkeu MEL, Begoude BAD et al (2011) Effect of Trichoderma asperellum and arbuscular mycorrhizal fungi on cacao growth and resistance against black pod disease. Crop Prot 30:1321–1327. doi:10.1016/j.cropro.2011.05.003

    Article  Google Scholar 

  58. Thomas RJ, Akhtar-Schuster M, Stringer LC, Marques MJ, Escadafal R, Abraham E, Enne G (2012) Fertile ground? Options for a science-policy platform for land. Environ Sci Pol 16:122–135. doi:10.1016/j.envsci.2011.11.002

    Article  Google Scholar 

  59. Tsuchiya Y, McCourt P (2012) Strigolactones as small molecule communicators. Mol Biosyst 8:464–469. doi:10.1039/c1mb05195d

    PubMed  Article  CAS  Google Scholar 

  60. Vazquez MM, Cesar S, Azcon R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Article  Google Scholar 

  61. Vestberg M, Cassells AC, Schubert A, Cordier C, Gianinazzi S (2002) Arbuscular mycorrhizal fungi and micropropagation of high value crops. In: Giananazzi S, Schüepp H, Barea JM, Hasselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser Verlag Basel, Switzerland, pp 223–233

    Google Scholar 

  62. Von Alten H, Blal B, Dodd JC, Feldmann F, Vosatka M (2002) Quality control of arbuscular mycorrhizal fungi inoculum in Europe. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology and agriculture. Birkhäuser Verlag, Basel, pp 281–296

    Google Scholar 

  63. Vosátka M, Albrechtová J (2008) Theoretical aspects and practical uses of mycorrhizal technology in floriculture and horticulture. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues 5, 1st edn. Global Science Books, Isleworth, pp 466–479

    Google Scholar 

  64. Vosatka M, Albrechtova J (2009) Microbial strategies for crop improvement. In: Khan MS, Zaidi A, Musarrat J (eds) Benefits of arbuscular mycorrhizal fungi to sustainable crop production. Springer, Dordrecht, pp 205–225

    Google Scholar 

  65. Vosátka M, Dodd JC (2002) Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser Verlag, Basel, pp 235–248

    Google Scholar 

  66. Vosátka M, Dodd JC, Patten R, von Alten H, Hutter I, Blal B, Dorrego A, Estaun V, Kapulnik Y, Giovannetti G, Cassels A, Gianinazzi S (2003) A joint initiative for the use of mycorrhizal fungi in plant production (the establishment of the Federation of European Mycorrhizal Fungi Producers – FEMFiP). Folia Geobot 38:235–237. doi:10.1007/BF02803155

    Article  Google Scholar 

  67. Vosátka M, Albrechtova J, Patten R (2008a) The international market development for mycorrhizal technology. In: Varma A (ed) Mycorrhiza. Springer, Dordrecht, pp 419–438

    Google Scholar 

  68. Vosátka M, Gajdoš J, Kolomý P, Kavková M, Oliviera RS, Franco AR, Sousa NR, Carvalho MF, Castro PML, Albrechtová J (2008b) Applications of ectomycorrhizal inocula in nursery and field plantings: the importance of inoculum tuning to target conditions. In: Feldmann F, Kapulnik Y, Baar J (eds) Mycorrhiza works. Desutsche Phytomedizinische Gesellschaft, Braunschweig, pp 112–124

    Google Scholar 

  69. Vosátka M, Látr A, Albrechtová J (2008c) How to apply mycorrhizal inocula in a large-scale and what outcome can be expected in respect to plant growth and cultivation costs. In: Feldmann F, Kapulnik Y, Baar J (eds) Mycorrhiza works. Desutsche Phytomedizinische Gesellschaft, Braunschweig, pp 323–339

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the manuscript editor and two anonymous referees for all their suggestions and comments, which helped to improve manuscript. The authors acknowledge funding of R&D from TACR TAO2020544, projects funded by the Ministry of Education, Youth and Sports of the Czech Republic in the EU-coordinated scheme Eurostars MycoDripSeed E!4366, and the project of the Ministry of Industry and Trade of the Czech Republic FR-T11/299 and the R&D project 9210AAO003S3427 funded by the Conseil Régional de Bourgogne (France). Two co-authors Ph.D. Aleš Látr and Prof. Silvio Gianinazzi are employed by mycorrhizal inoculum producer and inoculum distributor, respectively. They declare that their contribution to the manuscript is based on purely scientific knowledge and, thus, does not constitute any conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miroslav Vosátka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vosátka, M., Látr, A., Gianinazzi, S. et al. Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58, 29–37 (2012). https://doi.org/10.1007/s13199-012-0208-9

Download citation

Keywords

  • Arbuscular mycorrhizal fungi
  • Sustainable agriculture
  • Inoculum quality
  • Inoculum tuning
  • Large-scale trials/verification
  • Mycorrhizal technology