Skip to main content
Log in

Reliability and cost optimization of series–parallel system with metaheuristic algorithm

  • ORIGINAL ARTICLE
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

This study looks into the numerous reliability aspects of a series–parallel system. The designed system is made up of the three subsystems A, B, and C that interconnected in a series–parallel manner. Subsystem B has two units, whereas subsystems A and C have a single unit. Here, the system reliability measures such as reliability, availability, and mean time to failure using Laplace transformation and Markov’s process are evaluated. This study deals with minimize cost while system having the maximum reliability as constraining from one of the metaheuristic algorithms i.e., Particle Swarm Optimization (PSO). Lastly, a numerical example and graphical representation has been shown that the proposed methods are effective and efficient for solving reliability measures and cost problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aghaei J, Muttaqi KM, Azizivahed A, Gitizadeh M (2014) Distribution expansion planning considering reliability and security of energy using a modified PSO (PSO) algorithm. Fac Eng Inform Sci 65:398–411

    Google Scholar 

  • Eberhart R, Kennedy J (1995b) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942–1948)

  • Goyal N, Ram M, Kaushik A (2017a) Performability of solar thermal power plant under reliability characteristics. Int J Syst Assur Eng Manag 8:479–487

    Article  Google Scholar 

  • Goyal N, Ram M, Amoli S, Suyal A (2017b) Sensitivity analysis of a three-unit series system under k-out-of-n redundancy. Int J Qual Reliab Manag 34(6):770–784

    Article  Google Scholar 

  • Jiang T, Liu Y, Zheng YX (2019) Optimal loading strategy for multi-state systems: cumulative performance perspective. Appl Math Model 74:199–216

    Article  MathSciNet  Google Scholar 

  • Kennedy J, Eberhart RC (1995a) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks IV (pp. 1942–1948). Piscataway: IEEE

  • Kumar A, Kumar P (2020) Application of Markov process/mathematical modelling in analysing communication system reliability. Int J Qual Reliab Manag 37(2):354–371

    Article  Google Scholar 

  • Kvassay M, Rusnak P, Rabcan J (2019) Time-dependent analysis of series-parallel multistate systems using structure function and markov processes. Advances in system reliability engineering. Elsevier, pp 131–165. https://doi.org/10.1016/B978-0-12-815906-4.00005-1

    Chapter  Google Scholar 

  • Levitin G, Xing L, Ben-Haim H, Dai Y (2013) Reliability of series-parallel systems with random failure propagation time. IEEE Trans Reliab 62(3):637–647

    Article  Google Scholar 

  • Li ZS (2012) Reliability engineering, 2nd edition. J Qual Technol 44(4):394–395. https://doi.org/10.1080/00224065.2012.11917908

    Article  Google Scholar 

  • Ling X, Zhang Y, Gao Y (2021) Reliability optimization in series-parallel and parallel-series systems subject to random shocks. Proc Instit Mech Eng Part O J Risk Reliab 235(6):998–1008

    Google Scholar 

  • Marouani H (2021) Optimization for the redundancy allocation problem of reliability using an improved PSO algorithm. J Optim 2021:1–9

    Google Scholar 

  • Mellal MA, Zio E (2019) An adaptive PSO method for multi-objective system reliability optimization. Proc Instit Mech Eng Part O J Risk Reliab 233(6):990–1001

    Google Scholar 

  • Montoro-Cazorla D, Pérez-Ocón R (2018) Constructing a markov process for modelling a reliability system under multiple failures and replacements. Reliab Eng Syst Saf 173:34–47

    Article  Google Scholar 

  • Negi G, Kumar A, Pant S, Ram M (2021) Optimization of complex system reliability using hybrid grey wolf optimizer. Decis Making Appl Manag Eng 4(2):241–256

    Article  Google Scholar 

  • Ouzineb M, Nourelfath M, Gendreau M (2008) Tabu search for the redundancy allocation problem of homogenous series-parallel multi-state systems. Reliab Eng Syst Saf 93(8):1257–1272

    Article  Google Scholar 

  • Pant S, Kumar A, Ram M (2017) Reliability optimization: a particle swarm approach. In: Mangey Ram J, Davim Paulo (eds) Advances in reliability and system engineering. Springer International Publishing, Cham, pp 163–187. https://doi.org/10.1007/978-3-319-48875-2_7

    Chapter  Google Scholar 

  • Peiravi A, Ardakan MA, Zio E (2020) A new Markov-based model for reliability optimization problems with a mixed redundancy strategy. Reliab Eng Syst Saf 201:106987

    Article  Google Scholar 

  • Qiu S, Ming HX (2019) Reliability evaluation of multi-state series-parallel systems with common bus performance sharing considering transmission loss. Reliab Eng Syst Saf 189:406–415

    Article  Google Scholar 

  • Ram M, Singh V (2014) Modeling and availability analysis of internet data center with various maintenance policies. Int J Eng 27(4):599–608

    MathSciNet  Google Scholar 

  • Saghih AMF, Modares A (2021) A new dynamic model to optimize the reliability of the series-parallel systems under warm standby components. J Ind Manag Optim 19(1):376–401

    Article  MathSciNet  Google Scholar 

  • Şenel FA, Gökçe F, Yüksel AS, Yiğit T (2019) A novel hybrid PSO–GWO algorithm for optimization problems. Eng Comput 35(4):1359–1373

    Article  Google Scholar 

  • Tavakkoli-Moghaddam R, Safari J, Sassani F (2008) Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm. Reliab Eng Syst Saf 93(4):550–556

    Article  Google Scholar 

  • Tillman FA, Hwang CL, Fan LT, Lai KC (1970) Optimal reliability of a complex system. IEEE Trans Reliab 19(3):95–100

    Article  Google Scholar 

  • Wang L, Singh C (2007) Compromise between cost and reliability in optimum design of an autonomous hybrid power system using mixed-integer PSO algorithm. In: 2007 International conference on clean electrical power. IEEE, Capri, Italy. pp. 682–689

  • Xie L, Lundteigen MA, Liu Y (2020) Reliability and barrier assessment of series–parallel systems subject to cascading failures. Proc Instit Mech Eng Part O J Risk Reliab 234(3):455–469

    Google Scholar 

  • Zhou G, Guo B, Gao X, Zhao D, Yan Y (2014) Research on the system reliability modeling based on the Markov process and reliability block diagram. Intelligent data analysis and its applications, vol II. Springer, Cham, pp. 545–553

Download references

Acknowledgements

One of the author Miss Shivani Choudhary is thankful to Graphic Era Deemed to be University, Dehradun, India for providing Ph.D. fellowship for this research work.

Funding

No funding is required for the completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nupur Goyal.

Ethics declarations

Conflict of interest

There is no conflict of interest for the publication of this manuscript.

Human and animal rights

There is no humans or animals related research are involved in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{gathered} p_{0} (t + \Delta t) = (1 - 2\delta_{B} \Delta t)\,(1 - \delta_{A} \Delta t)\,(1 - \delta_{C} \Delta t)p_{0} (t + \Delta t) \hfill \\ \quad + \int_{0}^{\infty } {p_{11} (q,t)} \,\gamma (q)\,dq\,\Delta t + \int_{0}^{\infty } {p_{10} (q,t)} \,\gamma (q)\,dq\,\Delta t \hfill \\ \quad + \int_{0}^{\infty } {p_{9} (q,t)} \,\gamma (q)\,dq\,\Delta t + \int_{0}^{\infty } {p_{8} (q,t)} \,\gamma (q)\,dq\,\Delta t \hfill \\ \end{gathered}$$
(34)
$$p_{2} (t + \Delta t) = (1 - \delta_{B} \Delta t)\,(1 - \delta_{C} \Delta t)\,p_{2} (t) + \,p_{0} (t)2\delta_{B} \,\Delta t$$
(35)
$$p_{1} (t + \Delta t) = (1 - \delta_{C} \Delta t)\,(1 - \delta_{A} \Delta t)\,p_{1} (t) + \,p_{2} (t)\delta_{B} \,\Delta t$$
(36)
$$p_{3} (t + \Delta t) = (1 - \delta_{C} \Delta t)\,(1 - 2\delta_{B} \Delta t)\,p_{3} (t) + \,p_{0} (t)\delta_{A} \,\Delta t$$
(37)
$$p_{4} (t + \Delta t) = (1 - \delta_{A} \Delta t)\,(1 - 2\delta_{B} \Delta t)\,p_{4} (t) + \,p_{0} (t)\delta_{C} \,\Delta t$$
(38)
$$p_{5} (t + \Delta t) = (1 - \delta_{B} \Delta t)\,\,p_{5} (t) + \,p_{4} (t)2\delta_{B} \,\Delta t + p_{2} \delta_{C} \Delta t$$
(39)
$$p_{6} (t + \Delta t) = (1 - \delta_{C} \Delta t)\,(1 - \delta_{B} \Delta t)\,p_{6} (t) + \,p_{3} (t)2\delta_{B} \,\Delta t + p_{2} \delta_{A} \Delta t$$
(40)
$$p_{7} (t + \Delta t) = (1 - \delta_{C} \Delta t)\,p_{7} (t) + \,p_{6} (t)\delta_{B} \,\Delta t + p_{1} \delta_{A} \Delta t$$
(41)
$$p_{9} (q + \Delta q,t + \Delta t) = (1 - \gamma \Delta t)\,\,p_{9} (t)$$
(42)
$$p_{8} (q + \Delta q,t + \Delta t) = (1 - \gamma \Delta t)\,\,p_{8} (t)$$
(43)
$$p_{10} (q + \Delta q,t + \Delta t) = (1 - \gamma \Delta t)\,\,p_{10} (t)$$
(44)
$$p_{11} (q + \Delta q,t + \Delta t) = (1 - \gamma \Delta t)\,\,p_{11} (t)$$
(45)

Boundary Conditions

$$p_{9} (0,t) = \delta_{A} \,p_{4} (t) + \delta_{C} \,p_{3} (t)$$
(46)
$$p_{8} (0,t) = \delta_{C} \,p_{2} (t) + \delta_{B} \,p_{5} (t)$$
(47)
$$p_{10} (0,t) = \delta_{A} \,p_{5} (t) + \delta_{C} \,p_{6} (t)$$
(48)
$$p_{11} (0,t) = \delta_{C} \,p_{7} (t)$$
(49)

Initial Condition.

Good Condition \(p_{0} = 1\) and all are zero (0).

From Eq. (34)

$$\begin{gathered} p_{0} (t + \Delta t) = (1 - \delta_{C} \Delta t - \delta_{A} \Delta t + \delta_{A} \,\delta_{C} (\Delta t)^{2} - 2\delta_{B} \Delta t + 2\delta_{B} \,\delta_{C} (\Delta t)^{2} \hfill \\ + 2\delta_{B} \,\delta_{A} (\Delta t)^{2} - 2\delta_{B} \,\delta_{C} \,\delta_{A} (\Delta t)^{3} )p_{0} \hfill \\ + \int_{0}^{\infty } {p_{11} (q,t)} \,\gamma (q)\,dq\,\Delta t + \int_{0}^{\infty } {p_{10} (q,t)} \,\gamma (q)\,dq\,\Delta t \hfill \\ + \int_{0}^{\infty } {p_{9} (q,t)} \,\gamma (q)\,dq\,\Delta t + \int_{0}^{\infty } {p_{8} (q,t)} \,\gamma (q)\,dq\,\Delta t \hfill \\ \end{gathered}$$

Neglecting higher order terms of \(\Delta t\) since \(\Delta t\) is very small. So, authors get-

$$\begin{aligned} p_{0} (t + \Delta t) = & (1 - \delta _{C} \Delta t - \delta _{A} \Delta t - 2\delta _{B} \Delta t)p_{0} (t) \\ & + \int_{0}^{\infty } {p_{{11}} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t + \int_{0}^{\infty } {p_{{10}} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t \\ & + \int_{0}^{\infty } {p_{9} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t + \int_{0}^{\infty } {p_{8} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t \\ \end{aligned}$$
$$\begin{aligned} p_{0} (t + \Delta t) = & p_{0} (t) + ( - \delta _{C} \Delta t - \delta _{A} \Delta t - 2\delta _{B} \Delta t)p_{0} (t) \\ & + \int_{0}^{\infty } {p_{{11}} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t + \int_{0}^{\infty } {p_{{10}} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t \\ & + \int_{0}^{\infty } {p_{9} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t + \int_{0}^{\infty } {p_{8} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t \\ \end{aligned}$$
$$\begin{aligned} p_{0} (t + \Delta t) - p_{0} = & ( - \delta _{C} \Delta t - \delta _{A} \Delta t - 2\delta _{B} \Delta t)p_{0} \\ & + \int_{0}^{\infty } {p_{{11}} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t + \int_{0}^{\infty } {p_{{10}} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t \\ & + \int_{0}^{\infty } {p_{9} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t + \int_{0}^{\infty } {p_{8} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \Delta t \\ \end{aligned}$$

Divide by \(\Delta t\) both side

$$\begin{aligned} \frac{{p_{0} (t + \Delta t) - p_{0} (t)}}{{\Delta t}} = & ( - \delta _{C} - \delta _{A} - 2\delta _{B} )p_{0} (t) \\ & + \int_{0}^{\infty } {p_{{11}} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} + \int_{0}^{\infty } {p_{{10}} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \\ & + \int_{0}^{\infty } {p_{9} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} + \int_{0}^{\infty } {p_{8} (q,t)} {\mkern 1mu} \gamma (q){\mkern 1mu} dq{\mkern 1mu} \\ \end{aligned}$$
$$\begin{gathered} \left( {\frac{\partial }{\partial t} + \delta_{C} + \delta_{A} + 2\delta_{B} } \right)\,p_{0} (t) = \int_{0}^{\infty } {p_{11} (q,t)} \,\gamma (q)\,dq\, + \int_{0}^{\infty } {p_{10} (q,t)} \,\gamma (q)\,dq\, \hfill \\ \quad + \int_{0}^{\infty } {p_{9} (q,t)} \,\gamma (q)\,dq\, + \int_{0}^{\infty } {p_{8} (q,t)} \,\gamma (q)\,dq\, \hfill \\ \end{gathered}$$
(50)

Similarly, from Eq. (35) to (41)

$$\left( {\frac{\partial }{\partial t} + \delta_{C} + \delta_{A} + \delta_{B} } \right)\,p_{2} = \,2\delta_{B} \,p_{0}$$
(51)
$$\left( {\frac{\partial }{\partial t} + \delta_{C} + \delta_{A} } \right)\,p_{2} = \,\delta_{B} \,p_{1}$$
(52)
$$\left( {\frac{\partial }{\partial t} + \delta_{C} + 2\delta_{B} } \right)\,p_{3} = \,\delta_{A} \,p_{0}$$
(53)
$$\left( {\frac{\partial }{\partial t} + \delta_{A} + 2\delta_{B} } \right)\,p_{4} = \,\delta_{C} \,p_{0}$$
(54)
$$\left( {\frac{\partial }{\partial t} + \delta_{B} + \delta_{A} } \right)\,p_{5} \, = \,\delta_{C} \,p_{1} + 2\delta_{B} \,p_{4}$$
(55)
$$\left( {\frac{\partial }{\partial t} + \delta_{B} + \delta_{C} } \right)\,p_{6} \, = \,\delta_{A} \,p_{1} + 2\delta_{B} \,p_{3}$$
(56)
$$\left( {\frac{\partial }{\partial t} + \delta_{C} } \right)\,p_{7} \, = \,\delta_{A} \,p_{2} + \delta_{B} \,p_{6}$$
(57)

From Eq. (42), by a Taylor expansion

$$\begin{gathered} p_{9} (q,t) + \Delta q\frac{\partial }{\partial q}p_{9} (q,t) + \Delta t\frac{\partial }{\partial q}p_{9} (q,t) + - - - - - = p_{9} (q,t) \hfill \\ \quad + ( - \gamma \,\Delta t)\,p_{9} (q,t) + \delta_{C} \,\Delta t\,p_{9} (q,t) + \delta_{A} \,\Delta t\,p_{9} (q,t) \hfill \\ \end{gathered}$$

As, \(\Delta q \approx \Delta t\), then we get

$$\left( {\frac{\partial }{\partial q} + \frac{\partial }{\partial t} + \gamma } \right)p_{9} (t) = \,0$$
(58)

Similarly, from Eq. (43) to (45)

$$\left( {\frac{\partial }{\partial q} + \frac{\partial }{\partial t} + \gamma } \right)p_{8} (t) = \,0$$
(59)
$$\left( {\frac{\partial }{\partial q} + \frac{\partial }{\partial t} + \gamma } \right)p_{10} (t) = \,0$$
(60)
$$\left( {\frac{\partial }{\partial q} + \frac{\partial }{\partial t} + \gamma } \right)p_{11} (t) = \,0$$
(61)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Ram, M., Goyal, N. et al. Reliability and cost optimization of series–parallel system with metaheuristic algorithm. Int J Syst Assur Eng Manag 15, 1456–1466 (2024). https://doi.org/10.1007/s13198-023-01905-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-023-01905-4

Keywords

Navigation