Skip to main content
Log in

Chaotic dynamic behavior of switched reluctance motor taking into account of magnetic saturation effects

  • Original article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

The aim of this paper is to present a mathematical model of 6/2 SRM that takes into account magnetic saturation effects which is unavoidable in a SRM for some values of phase current and rotor position and to study its global dynamics according to the control frequency in open loop. A mathematical model of the SRM characterizing its overall dynamical behavior is presented. Using a semi-analytical approach, flux-linkage and static torque are fast computed to determine the incremental inductance and voltage per unit speed. These parameters are integrated in the dynamical model in order to take into account geometric design and magnetic saturation of the SRM. The obtained precise model and close to the Finite Element Analysis, is thereafter used to study the chaotic behavior of the SRM using standard nonlinear analysis techniques. The bifurcation diagrams, phase portrait, Poincare maps and time series analysis of the 6/2 SRM was given. As a result, the global dynamics of the SRM (periodicity, sub-harmonic and chaotic behavior) is clearly reported. The 6/2 SRM presents a chaotic behavior for an operating frequency beyond 275 Hz. This work can be useful for machine engineers since the dynamic instability can be the cause of vibration and noise in the machine. The results obtained could then be useful and help avoid such noisy operation of the machine for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(I_{\max }\) :

Maximum value of phase current (A)

\(E\) :

DC phase voltage (V)

\(R\) :

Phase resistance (\(\Omega\))

J Z :

Current density (A/m2)

A Z :

Magnetic potential in z direction (A)

μ:

Magnetic permeability (Wb/(A.m))

L :

Axial length of the machine (m)

S :

Represents the surface of a notch (m2)

S k :

Surface of the element k of the mesh (m2)

A k :

Magnetic potential on the element k (A).

\(\psi\) :

Magnetic flux (Wb)

\(W_{em}^{^{\prime}}\) :

Magnetic co-energy (H.A2)

\(\theta\) :

Electrical rotor position (rad)

\(I\) :

Phase current (A

\(T_{e}\) :

Electromagnetic torque (N.m)

\(N_{dr}\) :

Number of tooth on the rotor of SRM

\(U\) :

Phase voltage (V)

\(\Omega\) :

Angular speed of SRM (rad/s)

T L :

Load torque (N.m)

f V :

Viscous friction coefficient (N.m.s)

J :

Moment of inertia (kg.m2)

\(\Psi_{I}\) :

Incremental inductance (H)

\(\Psi_{\theta }\) :

Voltage per speed unit (V)

A 0, A n, B n :

Fourier coefficients

A c :

Matrix of the coefficient of interpolation

\(\omega\) :

Electrical angular speed (rad/s)

\(f\) :

Frequency (Hz)

\(T\) :

Period of phase voltage (s

References

  • Ahmed T, Abdel GA (2011) Sliding controller of switched reluctance motor, Recent Advances in Robust Control - Theory and Applications in Robotics and Electromechanics, ISBN: 978–953–307–421–4, InTech; 2011. Available at: http://www.intechopen.com/books/recent-advancesin-robust-control-theory-and-applications-in-robotics-and-electromechanics/sliding-controller-of-switchedreluctance-motor

  • Alonge F, Cirrincione M, Pucci M, Sferlazza A (2015) A nonlinear observer for rotor flux estimation considering magnetic saturation effects in induction motor drives. 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, art. no. 7310065, pp. 2892–2898. DOI: https://doi.org/10.1109/ECCE.2015.7310065

  • Antoine JF, Sauvey C, Visa C, Abba G (2003) Optimisation de la forme d'un rotor de MRV 6/2 pour I'UGV”. In: Electrotechnique du futur, EF'03 (Supelec, Ed.). Vol. CdRom. pp. Ref.24, 1–6

  • Armand Eyebe Fouda JS, Samrat Sabat L, Yves Effa J (2013) A modifed 0–1 test for chaos detection in oversampled time series observations. Int J Bifurc Chaos. https://doi.org/10.1142/S0218127414500631

    Article  MATH  Google Scholar 

  • Asakura T (2000) Chaos detection in velocity control of induction motor and its control by using neural network” in IEEEWCC 2000 - ICSP 2000. 2000 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress 2000, Beijing, China, pp. 1633–1638. DOI: https://doi.org/10.1109/ICOSP.2000.893414

  • Asgar M, Afjei E (2009) A new class of resonant discharge drive topology for switched reluctance motor. Iran J Electr Electr Eng 5(4):261–269

    Google Scholar 

  • Chen JH (1999) Chaos in voltage-mode controlled DC drive system. Int J Electron 86(7):857–874

    Article  Google Scholar 

  • De Castro MR, Robert B, Goeldel C (2008) Bifurcations and chaotic dynamics in a linear switched reluctance motor. In: IEEE 2008 13th International Power Electronics and Motion Control Conference, Poznan, Poland. DOI: https://doi.org/10.1109/EPEPEMC.2008.4635581

  • De Castro MR, Robert B, Goeldel C (2009) Strange attractor and fractal dimension in a linear switched reluctance motor. In: 2009 6th International Multi-Conference on Systems, Signals and Devices, SSD 2009, Djerba, Tunisia

  • Eckmann JP (1985) Ergodic theory of chaos and strange attractors. Rev Mod Phys 57(3):617–656

    Article  MathSciNet  Google Scholar 

  • Enache S, Campeanu A, Vlad I, Enache M-A, Dobriceanu M (2014) Modeling of line-starting of reluctance synchronous motors considering magnetic saturation, with experimental validation. In: 2014 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2014, art. no. 6850886, pp. 324–329. DOI: https://doi.org/10.1109/OPTIM.2014.6850886

  • Gao Y, Chau KT (2003) Design of permanent magnets to avoid chaos in PM synchronous machines. IEEE Trans Magn 39(5):2995–2997

    Article  Google Scholar 

  • Gherabi Z, Toumi D, Benouzza N, Bendiabdellah A (2020) A proposed approach for separation between short circuit fault, magnetic saturation phenomenon and supply unbalance in permanent magnet synchronous motor. Int J Eng Trans A 33(10):1968–1977. https://doi.org/10.5829/IJE.2020.33.10A.15

    Article  Google Scholar 

  • Gonçalves AP, Cruz SMA, Ferreira FJTE, Mendes AMS, De Almeida AT (2014) Synchronous reluctance motor drive for electric vehicles including cross-magnetic saturation. 2014 IEEE Vehicle Power and Propulsion Conference, VPPC 2014, art. no. 7007140. DOI: https://doi.org/10.1109/VPPC.2014.7007140

  • Gottwald GA, Melbourne I (2004) A new test for chaos in deterministic systems. Proc R Soc A Math Phys Eng Sci 460(2042):603–611

    Article  MathSciNet  Google Scholar 

  • Gottwald GA, Melbourne I (2009) On the Implementation of the 0–1 Test for Chaos. SIAM J Appl Dyn Syst 8(1):129–145

    Article  MathSciNet  Google Scholar 

  • Hemati N (1994) Strange attractors in brushless dc motors. IEEE Trans Circuits Syst 41(1):40–45

    Article  Google Scholar 

  • Ilea D, Gillon F, Brochet P, Radulescu MM (2011) Comparative finite-element and permeance network analysis for design optimization of switched reluctance motors” in Computational Methods for the Innovative Design of Electrical Devices. Berlin Heidelberg, Germany: SpringerVerlag, pp. 304–310. http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3- 642–16224–4

  • Ismail G (2006) Modélisation numérique, optimisation et commande de machines a réluctance variable. Université de Metz, France, Thèse de Doctorat

    Google Scholar 

  • Kada BN, Taieb BA, Kernane C (2014) Design of switched reluctance motor using reluctance network analysis combined to teeth contour permeance method. J Electr Eng Rom 14(3):282–289

    Google Scholar 

  • Kano Y, Kosaka T, Matsui N (2010) Optimum design approach for a two-phase switched reluctance compressor drive. IEEE Trans Ind Appl 46(3):955–964

    Article  Google Scholar 

  • Kenmoe FED, Takorabet N, Meibody FT, Sargos MF (2010) Nonlinear finite element-circuit model of a hybrid stepping motor. COMPEL Int J Comput Math Electr Electron Eng 29(4):957–963

    Article  Google Scholar 

  • Kusumi T, Hara T, Umetani K, Hiraki E (2020) Phase-current waveform for switched reluctance motors to eliminate input-current ripple and torque ripple in low-power propulsion below magnetic saturation. IET Power Electron 13(15):3351–3359. https://doi.org/10.1049/iet-pel.2019.1207

    Article  Google Scholar 

  • Labiod C, Bahri M, Srairi K, Mahdad B, Benchouia MT, Benbouzid MEH (2015) Speed control of 8/6 switched reluctance motor with torque ripple reduction taking into account magnetic saturation effects. Energy Proc 74:112–121. https://doi.org/10.1016/j.egypro.2015.07.530

    Article  Google Scholar 

  • Pera MC, Robert B, Goeldel C (1999) Quasiperiodicity and chaos in a step motor. In: Proceedings of the 8th EPE Conference, Lausanne, Suisse

  • Pera MC, Robert B, Goeldel C (2000) Nonlinear dynamics in electromechanical systems-application to a hybrid stepping motor. Electromotion 7:31–42

    Google Scholar 

  • Piotr B, Mariusz K, Jan P (2016) A three-phase switched reluctance motor for a high speed drive. In: IEEE 2016 13th Selected Issues of Electrical Engineering and Electronics (WZEE), Rzeszow, Poland, DOI: https://doi.org/10.1109/WZEE.2016.7800190

  • Pucci M (2019) State-space space-vector model of the induction motor including magnetic saturation and iron losses. IEEE Trans Ind Appl 55(4):3453–3468. https://doi.org/10.1109/TIA.2019.2902327

    Article  Google Scholar 

  • Prabhu V, Rajini V, Balaji M (2015) A comparative study of operating angle optimization of switched reluctance motor with robust speed controller using PSO and GA. J Electr Eng Technol 10(2):551–559. https://doi.org/10.5370/JEET.2015.10.2.551

    Article  Google Scholar 

  • Reiss J, Alin F, Sandler M, Robert B (2002) A detailed analysis of the nonlinear dynamics of the electric step motor. In: IEEE 2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT '02., Bangkok, Thaïland. DOI: https://doi.org/10.1109/ICIT.2002.1189321

  • Robert B, Alin F, Goeldel C (2001) Aperiodic and chaotic dynamics in hybrid step motor – New Experimental Results”. In IEEEISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570), Pusan, South Korea, pp. 2136–2141. DOI: https://doi.org/10.1109/ISIE.2001.932047

  • Slimene MB, Khlifi MA, Fredj MB (2017) Sensorless speed control for dual stator induction motor drive using IFOC strategy with magnetic saturation. Appl Comput Electromagn Soc J 32(3):262–267

    Google Scholar 

  • Ujera Sudha R, Ragavi V, Chandrasegar T (2017) Analyzing correlation coefficient using software metrics. IEEE Int Conf Trends Electron Inf (ICEI). https://doi.org/10.1109/ICOEI.2017.8300894

    Article  Google Scholar 

  • Vlad I, Campeanu A, Enache S (2008) Improvement of pre-determination precision of operation characteristics for asynchronous motor by considering magnetic saturation. SPEEDAM 2008 - International Symposium on Power Electronics, Electrical Drives, Automation and Motion, art. no. 4581157, pp. 614–619. DOI: https://doi.org/10.1109/SPEEDHAM.2008.4581157

  • Ai-de Xu, Zhao X, Kunlun He, Cao Y (2018) Torque-ripple reduction of SRM using optimized voltage vector in DTC. IET Electr Syst Transp 8(1):35–43

    Article  Google Scholar 

  • Yongquan Z, Xingqong W, Dexiang L (2009) A constructor method of interpolation polynomials based on PSO”. IEEE Int Forum Inf Tech Appl. https://doi.org/10.1109/IFITA.2009.551

    Article  Google Scholar 

  • Zhong L (2002) Bifurcations and chaos in a permanent-magnet synchronous motor. IEEE Trans Circuits Syst 49(3):383–387. https://doi.org/10.1049/iet-est.2017.0090

    Article  Google Scholar 

  • Zwe-Lee G, Kuan-Yi K, Jia-Sheng H, Min-Fu H, Ming-Hsiao T (2014) Design and Optimization of High-Speed Switched Reluctance Motor Using Soft Magnetic Composite Material., in IEEE International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE-ASIA). DOI: https://doi.org/10.1109/IPEC.2014.6869593

Download references

Acknowledgements

Authors would like to thank their colleagues for improving the quality of the work.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Yves Effa.

Ethics declarations

Conflict of intesrest

The authors have no conflict of interest associated with this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guidkaya, G., Kenmoe Fankem, E.D. & Effa, J.Y. Chaotic dynamic behavior of switched reluctance motor taking into account of magnetic saturation effects. Int J Syst Assur Eng Manag 13, 1556–1571 (2022). https://doi.org/10.1007/s13198-021-01460-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-021-01460-w

Keywords

Navigation