Skip to main content
Log in

Constrained Laplacian biogeography-based optimization algorithm

  • Original Article
  • Published:
International Journal of System Assurance Engineering and Management Aims and scope Submit manuscript

Abstract

Biogeography-based optimization (BBO) is a relatively new nature inspired optimization technique proposed by Dan Simon for unconstrained optimization, which was later generalized and improved by Happing Ma and Dan Simon for constrained optimization, called blended biogeography-based optimization. In an earlier paper, the authors have proposed a Laplacian biogeography-based optimization algorithm (LX-BBO) for unconstrained optimization. The purpose of the present paper is to generalize the LX-BBO from the unconstrained case to the constrained case. This is done by using the Deb’s constrained handling method. In order to evaluate the performance of the proposed constrained LX-BBO for constrained optimization problems, five different constrained optimization problems and popular CEC 2006 benchmark collection is used. Based on the analysis of results it is shown that the proposed Constrained LX-BBO outperforms Blended BBO for constrained optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeli H, Cheng NT (1994) Augmented Lagrangian genetic algorithm for structural optimization. J Aerosp Eng 7(1):104–118

    Article  Google Scholar 

  • Bi X, Wang J (2012) Constrained optimization based on epsilon constrained biogeography-based optimization. In: 4th international conference on intelligent human–machine systems and cybernetics (IHMSC), vol 2. IEEE

  • Boussaïd I, Chatterjee A, Siarry P, Ahmed-Nacer M (2012) Biogeography-based optimization for constrained optimization problems. Comput Oper Res 39(12):3293–3304

    Article  MATH  MathSciNet  Google Scholar 

  • Cai X, Hu Z, Fan Z (2013) A novel memetic algorithm based on invasive weed optimization and differential evolution for constrained optimization. Soft Comput 17(10):1893–1910

    Article  Google Scholar 

  • Chuang YC, Chen CT, Hwang C (2016) A simple and efficient real-coded genetic algorithm for constrained optimization. Appl Soft Comput 38:87–105

    Article  Google Scholar 

  • Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Article  Google Scholar 

  • Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11):1245–1287

    Article  MATH  MathSciNet  Google Scholar 

  • Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186:311–338

    Article  MATH  Google Scholar 

  • Deep K, Thakur M (2007) A new crossover operator for real coded genetic algorithms. Appl Math Comput 188:895–912

    MATH  MathSciNet  Google Scholar 

  • Garg V, Deep K (2016a) Efficient mutation strategies embedded in Laplacian-biogeography-based optimization algorithm for unconstrained function minimization. Int J Appl Swarm Intell 7(2):12–44

    Google Scholar 

  • Garg V, Deep K (2016b) Performance of Laplacian biogeography-based optimization algorithm on CEC 2014 continuous optimization benchmarks and camera calibration problem. Swarm Evol Comput. doi:10.1016/j.swevo.2015.10.006

    Google Scholar 

  • Homaifar A, Qi CX, Lai SH (1994) Constrained optimization via genetic algorithms. Simulation 62(4):242–253

    Article  Google Scholar 

  • Hu Z, Cai X, Fan Z (2014) An improved memetic algorithm using ring neighborhood topology for constrained optimization. Soft Comput 18(10):2023–2041

    Article  Google Scholar 

  • Joines JA, Houck CR (1994) On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA’s. In: Proceedings of the first IEEE conference on evolutionary computation, 1994. IEEE world congress on computational intelligence. IEEE, pp 579–584

  • Li X, Yin M (2014) Self-adaptive constrained artificial bee colony for constrained numerical optimization. Neural Comput Appl 24(3–4):723–734

    Article  Google Scholar 

  • Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN, Coello CC, Deb K (2006) Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization. J Appl Mech 41:8

    Google Scholar 

  • Liepins GE, Vose MD (1990) Representational issues in genetic optimization. J Exp Theor Artif Intell 2(2):101–115

    Article  Google Scholar 

  • Long W, Liang X, Huang Y, Chen Y (2014) An effective hybrid cuckoo search algorithm for constrained global optimization. Neural Comput Appl 25(3–4):911–926

    Article  Google Scholar 

  • Ma H, Simon D (2010) Blended biogeography-based optimization for constrained optimization. Eng Appl Artif Intell 24(6):517–525

    Google Scholar 

  • Mezura-Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9(1):1–17

    Article  MATH  Google Scholar 

  • Mezura-Montes E, Coello CAC (2011) Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol Comput 1(4):173–194

    Article  Google Scholar 

  • Mi Z, Xu Y, Yu Y, Zhao T, Zhao B, Liu L (2015) Hybrid biogeography based optimization for constrained numerical and engineering optimization. Math Probl Eng. doi:10.1155/2015/423642

    Google Scholar 

  • Michalewicz Z, Attia N (1994) Evolutionary optimization of constrained problems. In: Proceedings of the 3rd annual conference on evolutionary programming. World Scientific Publishing, River Edge, pp 98–108

  • Paredis J (1994) Co-evolutionary constraint satisfaction. In: Parallel problem solving from nature—PPSN III. Springer, Berlin, pp 46–55

  • Rao R, Patel V (2012) An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int J Ind Eng Comput 3(4):535–560

    Google Scholar 

  • Schoenauer M, Xanthakis S (1993) Constrained GA optimization. In: International computer games association, pp 573–580

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Yadav A, Deep K (2013) Constrained optimization using gravitational search algorithm. Nat Acad Sci Lett 36(5):527–534

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support offered by the MHRD under the grant to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanita Garg.

Appendix

Appendix

Test problem COP-1

$$\begin{aligned} & \hbox{min} \quad f\left( X \right) = \left( {x - 2} \right)^{2} + \left( {y - 1} \right)^{2} \\ & s.t. \quad g_{1} \left( X \right) :\; x + y - 2 \le 0 \\ &\quad g_{2} \left( X \right) :\; x^{2} - y + 2 \le 0 \\ &\quad - 5 \le x,y \le 5 \\ \end{aligned}$$

Test problem COP-2

$$\begin{aligned} & \hbox{min} \quad f\left( X \right) = \left( {x_{1}^{2} + x_{2} - 11} \right)^{2} + \left( {x_{2}^{2} + x_{1} - 7} \right)^{2} \\ & s.t.\quad g_{1} \left( X \right) :\; \left( {x_{1} - 0.05} \right)^{2} + \left( {x_{2} - 2.5} \right)^{2} - 4.84 \le 0 \\ &\quad\quad g_{2} \left( X \right) :\; 4.84 - x_{1}^{2} - \left( {x_{2} - 2.5} \right)^{2} \le 0 \\ &\quad\quad 0 \le x_{i} \le 6, \quad i = 1,2 \\ \end{aligned}$$

Test problem COP-3

$$\begin{aligned} & \hbox{min} \quad f\left( X \right) = \left( {x_{1} - x_{2} } \right)^{2} + \left( {x_{2} + x_{3} - 2} \right)^{2} + \left( {x_{4} - 1} \right)^{2} + \left( {x_{5} - 1} \right)^{2} \\ & s.t.\quad h_{1} \left( X \right): x_{1} + 3x_{2} = 0 \\ &\quad\quad h_{2} \left( X \right) :\; x_{3} + x_{4} - 2x_{5} = 0 \\ &\quad\quad h_{3} \left( X \right) :\; x_{2} - x_{5} = 0 \\ &\quad\quad - 10 \le x_{i} \le 10,\quad i = 1,2,3,4,5 \\ &\quad x^{*} = \left( {\frac{ - 33,11,27, - 5,11}{43}} \right),\quad f\left( {x^{*} } \right) = 176/43 \\ \end{aligned}$$

Test problem COP-4

$$\begin{aligned} & \hbox{min} \quad f\left( X \right) = 3x_{1} + x_{1}^{3} *10^{ - 6} + 2x_{2} + \frac{2}{3}x_{2}^{3} *10^{ - 6} \\ & s.t.\quad g_{1} \left( X \right): \left( {x_{3} - x_{4} } \right) - 0.48 \le 0 \\ &\quad\quad g_{2} \left( X \right) :\; \left( {x_{4} - x_{3} } \right) - 0.48 \le 0 \\ &\quad\quad h_{1} \left( X \right) :\;1000({ \sin }( - x_{3} - 0.25) + { \sin }\left( { - x_{4} - 0.25} \right)) - x_{1} + 894.8 = 0 \\ &\quad\quad h_{2} \left( X \right) :\;1000({ \sin }(x_{3} - 0.25) + { \sin }\left( {x_{3} - x_{4} - 0.25} \right)) - x_{2} + 894.8 = 0 \\ &\quad\quad h_{3} \left( X \right) :\;1000({ \sin }(x_{4} - 0.25) + { \sin }\left( {x_{4} - x_{3} - 0.25} \right)) - x_{1} + 1294.8 = 0 \\ &\quad xL \le x_{i} \le xU, \quad i = 1,2,3,4 \\ &\quad xL = \left[ {0,0, - 0.48, - 0.48} \right] \\ &\quad xU = \left[ {1200,1200,0.48,0.48} \right] \\ &\quad x^{*} = \left( {76.159201,925.195139,0.051108, - 0.428810} \right),\quad f\left( {x^{*} } \right) = 5174.412675 \\ \end{aligned}$$

Test problem COP-5

$$\begin{aligned} & \hbox{min} \quad f\left( X \right) = x_{1} + x_{2} + x_{3} \\ & s.t.\quad g_{1} \left( X \right) :\; 0.0025\left( {x_{4} + x_{6} } \right) - 1 \le 0 \\ &\quad g_{2} \left( X \right) :\; 0.0025\left( {x_{5} + x_{7} - x_{4} } \right) - 1 \le 0 \\ &\quad g_{3} \left( X \right): :\;0.01\left( {x_{8} - x_{5} } \right) - 1 \le 0 \\ &\quad g_{4} \left( X \right) :\; - x_{1} x_{6} + 833.33252x_{4} + 100x_{1} - 83333.333 \le 0 \\ &\quad g_{5} \left( X \right) :\; - x_{3} x_{7} + 1250x_{5} + x_{2} x_{4} - 1250x_{4} \le 0 \\ &\quad g_{6} \left( X \right) :\; - x_{3} x_{8} - 2500x_{5} + x_{3} x_{5} \mp 1250000 \le 0 \\ &\quad\quad 100 \le x_{1} \le 10000 \\ &\quad\quad 1000 \le x_{i} \le 10000,\quad i = 2,3 \\ &\quad 10 \le x_{i} \le 1000, i = 4,5,6,7,8 \\ &\quad f\left( {x^{*} } \right) = 7049.2480205 \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, V., Deep, K. Constrained Laplacian biogeography-based optimization algorithm. Int J Syst Assur Eng Manag 8 (Suppl 2), 867–885 (2017). https://doi.org/10.1007/s13198-016-0539-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13198-016-0539-7

Keywords

Navigation