Skip to main content
Log in

Water sorption isotherms on lyophilized jabuticaba (Myrciaria cauliflora) peel: potential byproduct for the production of dehydrated foods

  • ORIGINAL ARTICLE
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In this work, water sorption profiles on lyophilized jabuticaba peel were evaluated using the BET, GAB, Halsey, Henderson, Oswin and Smith isotherm models. All water sorption studies were conducted using the static gravimetric method and saturated CH3COOK, K2CO3, NaBr, SnCl2, KCl and BaCl2 solutions at 20, 30 and 35 °C. The best water sorption isotherm fits were determined with the GAB model at 20 °C, Oswin model at 30 °C and Halsey model at 35 °C. The curve profiles of the isotherm models employed were classified as type III. The results revealed that lyophilized jabuticaba peel can be safely stored at 20, 30 or 35 °C with the monitoring and control of relative humidity, equilibrium humidity and water activity. However, microbial action and undesirable enzymatic reactions may occur at 35 °C when the relative humidity is above 22%. The present results are useful for defining suitable storage and production conditions of a novel jabuticaba peel-based process for the production of dehydrated foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not Applicable.

Code availability

Not Applicable.

Abbreviations

CH3COOK:

Potassium acetate

K2CO3 :

Potassium carbonate

NaBr:

Sodium bromide

SnCl2 :

Tin (II) chloride

KCl:

Potassium chloride

BaCl2 :

Barium chloride

Xeq :

Equilibrium humidity

Xm :

Monolayer humidity

R2 :

Correlation coefficient

RMSE:

Root mean square error

E:

Relative error

MAE:

Median absolute error

BIC:

Bayesian information criterion

AIC:

Akaike information criterion

aw :

Water activity

RH, %:

Relative humidity

References

  • Aksil T, Abbas M, Trari M, Benamara S (2019) Water adsorption on lyophilized Arbutus unedo L. fruit powder: determination of thermodynamic parameters. Microchem J 145:35–41. https://doi.org/10.1016/j.microc.2018.10.012

    Article  CAS  Google Scholar 

  • Almeida RLJ, Santos NC, dos PereiraT S et al (2020) Determinação de compostos bioativos e composição físico-química da farinha da casca de jabuticaba obtida por secagem convectiva e liofilização. Res Soc Dev 9:1–18. https://doi.org/10.33448/rsd-v9i1.1876

    Article  Google Scholar 

  • Ambros L (2013) Isotermas de sorção de farinha de jabuticaba: determinação experimental e avaliação de modelos matemáticos. Universidade Federal do Rio Grande do Sul

  • Anvisa (2012) Resolução da diretoria colegiada RDC No 54, de 12 de novembro de 2012.

  • Aoac (2016) Official methods of analysis of AOAC international

  • Arslan-tontul S (2020) Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds. LWT - Food Sci Technol. https://doi.org/10.1016/j.lwt.2019.108859

    Article  Google Scholar 

  • Barros HDFQ, Baseggio AM, Angolini CFF et al (2019) Influence of different types of acids and pH in the recovery of bioactive compounds in Jabuticaba peel (Plinia cauliflora). Food Res Int 124:16–26. https://doi.org/10.1016/j.foodres.2019.01.010

    Article  CAS  Google Scholar 

  • Bejar AK, Mihoubi NB, Kechaou N (2012) Moisture sorption isotherms–experimental and mathematical investigations of orange (Citrus sinensis) peel and leaves. Food Chem 132:1728–1735. https://doi.org/10.1016/j.foodchem.2011.06.059

    Article  CAS  Google Scholar 

  • Betiol LFL (2016) Estudo das isotermas de adsorção do bagaço de mandioca proveniente da indústria de fécula. São José do Rio Preto

  • Boesso FF, Brunelli LT, Imaizumi VM, Venturini Filho WG (2015) Caracterização físico-química energética e sensorial de refresco adoçado de jabuticaba. Energ Na Agric 30:429–436. https://doi.org/10.17224/energagric.2015v30n4p429-436

    Article  Google Scholar 

  • Cassini AS (2004) Análise das características de secagem da proteína texturizada de soja. Universidade Federal do Rio Grande do Sul

  • de Lima AJB, Corrêa AD, Dantas-Barros AM et al (2011) Sugars, organic acids, minerals and lipids in jabuticaba. Rev Bras Frutic 33:540–550. https://doi.org/10.1590/s0100-29452011000200026

    Article  Google Scholar 

  • Ditchfield C (2000) Estudo dos métodos para a medida da atividade de água. Escola Politécnica da Universidade de São Paulo

  • dos Santos G, Nogueira RI, Rosenthal A (2018) Powdered yoghurt produced by spray drying and freeze drying: a review. Braz J Food Technol. https://doi.org/10.1590/1981-6723.12716

    Article  Google Scholar 

  • Embrapa (2015) Valor nutricional da Jabuticaba. Colombo - PR

  • Faria GS, Jardim FBB, da Silva AC et al (2016) Caracterização química da casca de jabuticaba (Myrciaria jabuticaba) liofilizada e sua aplicação em leite fermentado potencialmente simbiótico. J Ciências Biomédicas e Saúde 2:90–97

    Google Scholar 

  • Fellows P (2009) Food processing technology, 3rd edn. Woodhead Publishing Limited and CRC LLC, Cambridge

    Book  Google Scholar 

  • Freitas MLF, Polachini TC, de Souza AC, Telis-Romero J (2016) Sorption isotherms and thermodynamic properties of grated parmesan cheese. Int J Food Sci Technol 51:250–259. https://doi.org/10.1111/ijfs.12969

    Article  CAS  Google Scholar 

  • García-Pérez JV, Cárcel JA, Clemente G, Mulet A (2008) Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT - Food Sci Technol 41:18–25. https://doi.org/10.1016/j.lwt.2007.02.010

    Article  CAS  Google Scholar 

  • Halsey G (1948) Physical adsorption on non-uniform surfaces. J Chem Phys 16:931–937. https://doi.org/10.1063/1.1746689

    Article  CAS  Google Scholar 

  • Ial (2008) Métodos físico-químicos para análise de alimentos. Métodos físicos-quimicos para análise Aliment. 571–591

  • Kaufmann AI, Cherobin AK, Paulino AT et al (2021) Physicochemical characterization and modeling of water sorption isotherms for sugarcane samples (Saccharum officinarumL.). Sci Plena 17:1–13. https://doi.org/10.14808/sci.plena.2021.101501

    Article  Google Scholar 

  • Kaymak-Ertekin F, Gedik A (2004) Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. LWT-Food Sci Technol 37:429–438. https://doi.org/10.1016/j.lwt.2003.10.012

    Article  CAS  Google Scholar 

  • Lamounier ML, Andrade FDC, de Mendonça CD, Magalhães ML (2015) Desenvolvimento e caracterização de diferentes formulações de sorvetes enriquecidos com farinha da casca da jabuticaba (Myrciaria cauliflora). Rev do Inst Laticínios Cândido Tostes 70:93–104. https://doi.org/10.14295/2238-6416.v70i2.400

    Article  Google Scholar 

  • Leite-Legatti AV, Batista AG, Dragano NRV et al (2012) Jaboticaba peel: antioxidant compounds, antiproliferative and antimutagenic activities. Food Res Int 49:596–603. https://doi.org/10.1016/j.foodres.2012.07.044

    Article  CAS  Google Scholar 

  • Lenquiste SA, de ALamas C, da SMarineli R et al (2019) Jaboticaba peel powder and jaboticaba peel aqueous extract reduces obesity, insulin resistance and hepatic fat accumulation in rats. Food Res Int 120:880–887. https://doi.org/10.1016/j.foodres.2018.11.053

    Article  CAS  Google Scholar 

  • Lima TLB de, Carneiro EF de S, Silva RM da, et al (2018) Caracterização físico-química da casca de jabuticaba em diferentes estágios fisiológicos. Maceió - AL

  • Meira N de AN, Pereira N de P, Maciel LF, et al (2016) Flavonóides e antocianinas em Myrciaria cauliflora (Jabuticaba) visando à aplicabilidade cosmética. In: Visão Acadêmica

  • Miranda BM (2019) Extração de bioativos da casca de jabuticaba: pectina e antocianinas. Goiânia

  • Moreira TB, Rocha ÉMFF, Afonso MRA, da Costa JMC (2013) Comportamento das isotermas de adsorção do pó da polpa de manga liofilizada. Rev Bras Eng Agrícola e Ambient 17:1093–1098. https://doi.org/10.1590/s1415-43662013001000011

    Article  Google Scholar 

  • Muzaffar K, Kumar P (2015) Moisture sorption isotherms and storage study of spray dried tamarind pulp powder. Powder Technol 291:322–327. https://doi.org/10.1016/j.powtec.2015.12.046

    Article  CAS  Google Scholar 

  • Nepa – Núcleo de estudos e pesquisas em alimentação (2011) Tabela brasileira de composição de alimentos. BookEditora, Campinas/SP

  • Nogueira TAR, Abreu-Junior CH, Alleoni LRF et al (2018) Background concentrations and quality reference values for some potentially toxic elements in soils of São Paulo State, Brazil. J Environ Manag 221:10–19. https://doi.org/10.1016/j.jenvman.2018.05.048

    Article  CAS  Google Scholar 

  • Peixoto FM, Fernandes I, Gouvêa ACMS et al (2016) Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. J Funct Foods 24:373–381. https://doi.org/10.1016/j.jff.2016.04.021

    Article  CAS  Google Scholar 

  • Peng G, Chen X, Wu W, Jiang X (2007) Modeling of water sorption isotherm for corn starch. J Food Eng. https://doi.org/10.1016/j.jfoodeng.2006.04.063

    Article  Google Scholar 

  • Quatrin A, Rampelotto C, Pauletto R et al (2020) Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. J Funct Foods 65:103714

    Article  Google Scholar 

  • Resende LM, Oliveira LS, Franca AS (2020) Characterization of jabuticaba (Plinia cauliflora) peel flours and prediction of compounds by FTIR analysis. Lwt 133:110135. https://doi.org/10.1016/j.lwt.2020.110135

    Article  CAS  Google Scholar 

  • Ribeiro FFACR (2012) Processo de liofilização de produtos alimentares perecíveis. Instituto Superior de Engenharia de Lisboa

  • Sormoli EM, Langrish TAG (2015) Moisture sorption isotherms and net isosteric heat of sorption for spray-dried pure orange juice powder. LWT-Food Sci Technol 62:875–882. https://doi.org/10.1016/j.lwt.2014.09.064

    Article  CAS  Google Scholar 

  • Teixeira LN, Stringheta PC, de Oliveira FA (2008) Comparation of methods for anthocyanin quantification. Rev Ceres 55:297–304

    CAS  Google Scholar 

  • Tejada-Ortigoza V, Garcia-Amezquita LE, Serment-Moreno V et al (2017) Moisture sorption isotherms of high pressure treated fruit peels used as dietary fiber sources. Innov Food Sci Emerg Technol 43:45–53. https://doi.org/10.1016/j.ifset.2017.07.023

    Article  CAS  Google Scholar 

  • Thys RCS, Noreña CPZ, Marczak LDF et al (2010) Adsorption isotherms of pinhão (Araucaria angustifolia seeds) starch and thermodynamic analysis. J Food Eng 100:468–473. https://doi.org/10.1016/j.jfoodeng.2010.04.033

    Article  Google Scholar 

  • Vasconcelos MA da S, Melo Filho AB de (2010) Conservação em Alimentos, 1°. Sistema Escola Técnica Aberta do Brasil, Recife

  • Villa-Vélez HA, de Souza SJF, Ramos AP et al (2015) Thermodynamic properties of water adsorption from orange peels. J Bioenergy Food Sci 2:72–81. https://doi.org/10.18067/jbfs.v2i2.32

    Article  Google Scholar 

Download references

Acknowledgements

ATP thanks the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC, Brazil) for financial support (Grant numbers: 2019/TR672 and 2021/TR791) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for the research productivity scholarship (Grant number 312467/2019-2). This study was also funded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) – Finance Code 001)

Funding

Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC, Brazil, Grant numbers: 2019/TR672 and 2021/TR791. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil, Grant number 312467/2019–2). Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil, Finance Code 001).

Author information

Authors and Affiliations

Authors

Contributions

APDC: Investigation, formal analysis, roles/writing—original draft, revisions. AIK: Investigation, formal analysis. CME: Investigation, formal analysis. WDSR: Funding acquisition, resources, revisions. ATP: Conceptualization, funding acquisition, investigation, methodology, project administration, resources, revisions, writing—review & editing.

Corresponding author

Correspondence to Alexandre Tadeu Paulino.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethics approval

Not Applicable.

Consent to participate

All authors have read and agreed to the terms and conditions of Journal of Food Science and Technology.

Consent for publication

The authors agree with the publication of the data included in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castel, A.P.D., Kaufmann, A.I., Endres, C.M. et al. Water sorption isotherms on lyophilized jabuticaba (Myrciaria cauliflora) peel: potential byproduct for the production of dehydrated foods. J Food Sci Technol 60, 419–428 (2023). https://doi.org/10.1007/s13197-022-05628-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-022-05628-5

Keywords

Navigation