Skip to main content
Log in

Effect of fermentation on the antioxidant properties and phenolic compounds of Bambangan (Mangifera pajang) fruit

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The study aimed to determine the antioxidant activities and phenolic compounds of Bambangan (Mangifera pajang), a type of wild fruit belongs to the family of Anacardiaceae during fermentation at room (28 °C) and elevated temperature (35 °C). The antioxidant capacity was estimated based on 2,2-diphenyl-1-picyrlhydrazyl (DPPH) scavenging activity, ferric-ion-reducing power (FRAP), 2,2´-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation assay and oxygen-radical absorbing capacity (ORAC). A reversed phase high performance liquid chromatography (HPLC) was used to identify the phenolic compounds. Samples of bambangan fermented at 35 °C achieved the highest FRAP (141.42 mM Fe(II)/g extract) and ABTS values (5.00 mmol TE/g) within the first six days as compared to the samples fermented at room temperature (28 °C), which required 10 days to achieve the highest FRAP and ABTS values. No significant difference was found (p > 0.05) on the antioxidant activity of the samples that were kept at prolonged fermentation and storage. The total phenolic content (TPC) increased throughout the fermentation with the highest value of 44.69 \(\pm\) 0.01 mg GAE/g. Gallic acid, chlorogenic acid, vanillin, \(\rho\)-coumaric acid and rutin are the major phenolic compounds identified in the fermented product. The results suggested that the antioxidant capacity of bambangan is affected by the fermentation temperature and the fermented product could be a source of antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Abbreviations

DPPH:

2,2-Diphenyl-2-picrylhydrazyl

TPTZ:

2,4,6-Tripyridyl-s- triazine

AAPH:

2,2’-Azobis(2-amidinopropane) dihydrochloride

Trolox:

2,5,7,8-Tetramethychroman-2-carboxylic acid

BHA:

Butylated hydroxy anisole

EC50 :

Effective concentration providing 50% radical scavenging activity

RSA:

Radical scavenging activity

ORAC:

Oxygen-radical absorbing capacity

HPLC:

High performance liquid chromatography

DAD:

Diode array detector

UV:

Ultraviolet

DW:

Dry weight

GAE:

Gallic acid equivalent

SPSS:

Statistical Package for Social Science

ANOVA:

One-way analysis of variance

SD:

Standard deviation

References

  • Adwas AA, Elsayed ASI, Azab AE, Quwaydir FA (2019) Oxidative stress and antioxidant mechanisms in human body. J Appl Biotechnol Bioeng 6(1):43–47

    Google Scholar 

  • Alexandraki V, Georgalaki M, Papadimitriou K, Anastasiou R, Zoumpopoulou G, Chatzipavlidis I et al (2014) Determination of triterpenic acids in natural and alkaline-treated Greek table olives throughout the fermentation process. LWT Food Sci Technol 58(2):609–613

    Article  CAS  Google Scholar 

  • Bhanja Dey T, Chakraborty S, Jain KK, Sharma A, Kuhad RC (2016) Antioxidant phenolics and their microbial production by submerged and solid-state fermentation process: A review. Trends Food Sci Technol 53:60–74

    Article  CAS  Google Scholar 

  • Bock C, Ternes W (2010) The phenolic acids from bacterial degradation of the mangiferin aglycone are quantified in the feces of pigs after oral ingestion of an extract of Cyclopia genistoides (honeybush tea). Nutr Res 30(5):348–357

    Article  CAS  Google Scholar 

  • Bravo-Ferrada BM, Hollmann A, Brizuela NL, Hens DV, Tymczyszyn E, Semorile L (2016) Growth and consumption of l-malic acid in wine-like medium by acclimated and non-acclimated cultures of Patagonian Oenococcus oeni strains. Folia Microbiol 61(5):365–373

    Article  CAS  Google Scholar 

  • Cecchi L, Migliorini M, Cherubini C, Giusti M, Zanoni B, Innocenti M, Mulinacci N (2013) Phenolic profiles, oil amount and sugar content during olive ripening of three typical Tuscan cultivars to detect the best harvesting time for oil production. Food Res Intern 54(2):1876–1884

    Article  CAS  Google Scholar 

  • Chen C, Zhang Y, Gao Y, Xu Q, Ju X, Wang L (2016) Identification and anti-tumour activities of phenolic compounds isolated from defatted adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed meal. J Funct Foods 26:394–405

    Article  CAS  Google Scholar 

  • Choo KY, Kho C, Ong YY, Thoo YY, Lim RLH, Tan CP, Ho CW (2018) Studies on the storage stability of fermented red dragon fruit (Hylocereus polyrhizus) drink. Food Sci Biotechnol 27:1411–1417

    Article  CAS  Google Scholar 

  • Cvetković BR, Pezo LL, Tasić T, Šarić L, Kevrešan Ž, Mastilović J (2015) The optimisation of traditional fermentation process of white cabbage (in relation to biogenic amines and polyamines content and microbiological profile). Food Chem 168:471–477

    Article  Google Scholar 

  • Deʇirmencioʇlu N, Gürbüz O, Herken EN, Yildiz AY (2016) The impact of drying techniques on phenolic compound, total phenolic content and antioxidant capacity of oat flour tarhana. Food Chem 194:587–594

    Article  Google Scholar 

  • Filannino P, Bai Y, Di Cagno R, Gobbetti M, Gänzle MG (2015) Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol 46:272–279

    Article  CAS  Google Scholar 

  • Fritsch C, Heinrich V, Vogel RF, Toelstede S (2016) Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates. Food Microbiol 57:178–186

    Article  CAS  Google Scholar 

  • Gagné MJ, Barrette J, Savard T, Brassard J (2015) Evaluation of survival of murine norovirus-1 during sauerkraut fermentation and storage under standard and low-sodium conditions. Food Microbiol 52:119–123

    Article  Google Scholar 

  • Gao H, Wen JJ, Hu JL, Nie QX, Chen HH, Nie SP, Xiong T, Xie MY (2019) Momordica charantia juice with Lactobacillus plantarum fermentation: chemical composition, antioxidant properties and aroma profile. Food Biosci 29:62–72

    Article  Google Scholar 

  • Hassan FA, Ismail A, Abdulhamid A, Azlan A (2011) Identification and quantification of phenolic compounds in bambangan (Mangifera pajang Kort.) peels and their free radical scavenging activity. J Agric Food Chem 59(17):9102–9111

    Article  CAS  Google Scholar 

  • Hoyos-Arbeláez J, Vázquez M, Contreras-Calderón J (2017) Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: a review. Food Chem 221:1371–1381

    Article  Google Scholar 

  • Hur SJ, Lee SY, Kim YC, Choi I, Kim GB (2014) Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem 160:346–356

    Article  CAS  Google Scholar 

  • Jahurul MHA, Leykey B, Sharifudin MS et al (2018) Optimization of fat yield of bambangan (Mangifera pajang) kernel using response surface methodology and its antioxidant activities. Food Measure 12:1427–1438

    Article  Google Scholar 

  • Jaiswal AK, Abu-Ghannam N (2013) Kinetic studies for the preparation of probiotic cabbage juice: Impact on phytochemicals and bioactivity. Ind Crops Prod 50:212–218

    Article  CAS  Google Scholar 

  • Jutiviboonsuk A, Leeprechanon W (2019) Stability of Mangiferin in lotion and its Antioxidant Activity. Key Eng Mater 819:79–84

    Article  Google Scholar 

  • Kaur B, Chakraborty D, Kumar B (2013) Phenolic Biotransformations during conversion of ferulic acid to vanillin by lactic acid bacteria. Biomed Res Int 2013:e590359

    Article  Google Scholar 

  • Khurana RK, Bansal AK, Beg S, Burrow AJ, Katare OP, Singh KK, Singh B (2017) Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: systematic development, characterization and evaluation. Int J of Pharm 518(1-2):289–306

    Article  CAS  Google Scholar 

  • Kiai H, Hafidi A (2014) Chemical composition changes in four green olive cultivars during spontaneous fermentation. LWT - Food Sci Technol 57(2):663–670

    Article  CAS  Google Scholar 

  • Kitaoka N, Nomura T, Ogita S, Kato Y (2021) Bioproduction of 4-vinylphenol and 4-vinylguaiacol β-primeverosides using transformed bamboo cells expressing bacterial phenolic acid decarboxylase. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-021-03522-y

    Article  Google Scholar 

  • Knockaert D, Raes K, Struijs K, Wille C, Van Camp J (2014) Influence of microbial conversion and change in pH on iron-gallic acid complexation during lactobacillus fermentation. LWT Food Sci Technol 55(1):335–340

    Article  CAS  Google Scholar 

  • Kong KW, Khoo HE, Prasad NK, Chew LY, Amin I (2013) Total phenolics and antioxidant activities of pouteria campechiana fruit parts. Sains Malaysiana 42(2):123–127

    CAS  Google Scholar 

  • Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4(1):86–93

    Article  CAS  Google Scholar 

  • Li T, Jiang T, Liu N, Wu C, Xu H, Lei H (2021) Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chem 339(1):127859

    Article  CAS  Google Scholar 

  • Ling JKU, Chan YS, Nandong J (2020) Extraction of antioxidant compounds from the wastes of Mangifera pajang fruit: a comparative study using aqueous ethanol and deep eutectic solvent. SN Appl Sci 2(8):1365

    Article  CAS  Google Scholar 

  • Liu S, Chang X, Liu X, Shen Z (2016) Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chem 212:87–95

    Article  CAS  Google Scholar 

  • Liu A, Li X, Pu B, Ao X, Zhou K, He L, Chen S, Liu S (2017) Use of psychrotolerant lactic acid bacteria (Lactobacillus spp. and Leuconostoc spp.) isolated from chinese traditional paocai for the quality improvement of paocai products. J Agric Food Chem 65(12):2580–2587

    Article  CAS  Google Scholar 

  • Liu Z, Ren Z, Zhang J, Chuang C-C, Kandaswamy E, Zhou T, Zuo L (2018) Role of ROS and nutritional antioxidants in human diseases. Front Physiol 9:477

    Article  Google Scholar 

  • Mantzourani I, Kazakos S, Terpou A, Alexopoulos A, Bezirtzoglou E, Bekatorou A, Plessas S (2018a) potential of the probiotic Lactobacillus plantarum ATCC 14917 strain to produce functional fermented pomegranate juice. Foods 8(1):4

    Article  Google Scholar 

  • Mantzourani I, Kazakos S, Terpou A, Mallouchos A, Kimbaris A, Alexopoulos A, Bezirtzoglou E, Plessas S (2018b) Assessment of volatile compounds evolution, antioxidant activity, and total phenolics content during cold storage of pomegranate beverage fermented by Lactobacillus paracasei K5. Fermentation 4(4):95

    Article  CAS  Google Scholar 

  • Mirfat AHS, Salma I, Razali M (2016) Natural antioxidant properties of selected wild Mangifera species in Malaysia. J Trop Agric Food Sci 44(1):63–72

    Google Scholar 

  • Molaveisi M, Beigbabaei A, Akbari E, Noghabi MS, Mohamadi M (2019) Kinetics of temperature effect on antioxidant activity, phenolic compounds and color of Iranian jujube honey. Heliyon 5(1):e01129

    Article  Google Scholar 

  • Nemec MJ, Kim H, Marciante AB, Barnes RC, Hendrick ED, Bisson WH et al (2017) Polyphenolics from mango (Mangifera indica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice. J Nutr Biochem 41:12–19

    Article  CAS  Google Scholar 

  • Ng SY, Koon SS, Padam BS, Chye FY (2015) Evaluation of probiotic potential of lactic acid bacteria isolated from traditional Malaysian fermented Bambangan (Mangifera pajang). CYTA J Food 13(4):563–572

    CAS  Google Scholar 

  • Nile SH, Nile AS, Keum YS (2017) Total phenolics, antioxidant, antitumor, and enzyme inhibitory activity of Indian medicinal and aromatic plants extracted with different extraction methods. Biotech 7(1):76

    Google Scholar 

  • Okcu G, Ayhan K, Gunes Altuntas E, Vural N, Poyrazoglu ES (2016) Determination of phenolic acid decarboxylase produced by lactic acid bacteria isolated from shalgam (şalgam) juice using green analytical chemistry method. LWT Food Sci Technol 66:615–621

    Article  CAS  Google Scholar 

  • Padh H, Parmar S, Patel B (2017) Stability indicating HPTLC method for estimation of mangiferin in bulk and dosage form. Int J Pharma Bio Sci 7(3):71–77

    CAS  Google Scholar 

  • Pang Y, Ahmed S, Xu Y, Beta T, Zhu Z, Shao Y, Bao J (2018) Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chem 240:212–221

    Article  CAS  Google Scholar 

  • Pérez-Martín F, Seseña S, Izquierdo PM, Palop ML (2013) Esterase activity of lactic acid bacteria isolated from malolactic fermentation of red wines. Int J Food Microbiol 163(2–3):153–158

    Article  Google Scholar 

  • Pinsirodom P, Taprap R, Parinyapatthanaboot T (2018) Antioxidant activity and phenolic acid composition in different parts of selected cultivars of mangoes in Thailand. Int Food Res J 25(4):1435–1443

    CAS  Google Scholar 

  • Qu F, Zeng W, Tong X, Feng W, Chen Y, Ni D (2020) The new insight into the influence of fermentation temperature on quality and bioactivities of black tea. LWT 117:108646

    Article  CAS  Google Scholar 

  • Queiroz Santos VA, Nascimento CG, Schmidt CAP, Mantovani D, Dekker RFH, da Cunha MAA (2018) Solid-state fermentation of soybean okara : Isoflavones biotransformation, antioxidant activity and enhancement of nutritional quality. LW 92:509515

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237

    Article  CAS  Google Scholar 

  • Rochín-Medina JJ, Ramírez K, Rangel-Peraza JG et al (2018) Increase of content and bioactivity of total phenolic compounds from spent coffee grounds through solid state fermentation by Bacillus clausii. J Food Sci Technol 55:915–923

    Article  Google Scholar 

  • Salgado JM, Rodríguez-Solana R, Curiel JA, de las Rivas B, Muñoz R, Domínguez JM (2012) Production of vinyl derivatives from alkaline hydrolysates of corn cobs by recombinant Escherichia coli containing the phenolic acid decarboxylase from Lactobacillus plantarum CECT 748T. Bioresour Technol 117:274–285

    Article  CAS  Google Scholar 

  • Sarwar S, Anwar F, Raziq S, Nadeem M, Zreen Z, Cecil F (2012) Antioxidant characteristics of different solvent extracts from almond (Prunus dulcis L.) shell. J Med Plants Res 6:3311–3316

    CAS  Google Scholar 

  • Schaich KM, Tian X, Xie J (2015) Hurdles and pitfalls in measuring antioxidant efficacy: a critical evaluation of ABTS, DPPH, and ORAC assays. J Funct Foods 14:111–125

    Article  CAS  Google Scholar 

  • Shalaby E, Shanab SMM (2013) Antioxidant compounds, assays of determination and mode of action. Afr J Pharma Phamacol 7(10):528–539

    Article  Google Scholar 

  • Shao P, Zhang J, Fang Z, Sun P (2014) Complexing of chlorogenic acid with β-cyclodextrins: Inclusion effects, antioxidative properties and potential application in grape juice. Food Hydrocoll 41:132–139

    Article  CAS  Google Scholar 

  • Shin HS, Satsu H, Bae MJ, Zhao Z, Ogiwara H, Totsuka M, Shimizu M (2015) Anti-inflammatory effect of chlorogenic acid on the IL-8 production in Caco-2 cells and the dextran sulphate sodium-induced colitis symptoms in C57BL/6 mice. Food Chem 168:167–175

    Article  CAS  Google Scholar 

  • Tabaszewska M, Gabor A, Jaworska G, Drożdż I (2018) Effect of fermentation and storage on the nutritional value and contents of biologically—active compounds in lacto-fermented white asparagus (Asparagus officinalis L.). LWT 92:67–72

    Article  CAS  Google Scholar 

  • Wang CY, Wu SJ, Shyu YT (2014) Antioxidant properties of certain cereals as affected by food-grade bacteria fermentation. J Biosci Bioeng 117(4):449–456

    Article  Google Scholar 

  • Wang Y, He L, Xing Y, Zhou W, Pian R, Yang F, Chen X, Zhang Q (2019) Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresour Technol 284:349–358

    Article  CAS  Google Scholar 

  • Wiczkowski W, Szawara-Nowak D, Topolska J (2015) Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing. Food Chem 167:115–123

    Article  CAS  Google Scholar 

  • Wouters D, Bernaert N, Conjaerts W, Van Droogenbroeck B, De Loose M, De Vuyst L (2013) Species diversity, community dynamics, and metabolite kinetics of spontaneous leek fermentations. Food Microbiol 33(2):185–196

    Article  CAS  Google Scholar 

  • Xiao Y, Wang L, Rui X, Li W, Chen X, Jiang M, Dong M (2015) Enhancement of the antioxidant capacity of soy whey by fermentation with Lactobacillus plantarum B1–6. J Funct Foods 12:33–44

    Article  CAS  Google Scholar 

  • Xu D, Li Y, Meng X, Zhou T, Zhou Y, Zheng J, Zhang J (2017) Natural antioxidants in foods and medicinal plants: extraction, assessment and resources. Int J Mol Sci 18(1):96

    Article  Google Scholar 

  • Yang W, Tang H, Ni J, Wu Q, Hua D, Tao F, Xu P, Janssen PJ (2013) Characterization of two streptomyces enzymes that convert ferulic acid to vanillin. PLoS ONE 8(6):e67339

    Article  CAS  Google Scholar 

  • Yao J, Guo GS, Ren GH, Liu YH (2014) Production, characterization and applications of tannase. J Mol Catal B Enzym 101:137–147

    Article  CAS  Google Scholar 

  • Zou B, Wu J, Yu Y et al (2017) Evolution of the antioxidant capacity and phenolic contents of persimmon during fermentation. Food Sci Biotechnol 26:563–571

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by Seaweed Research Unit, Universiti Malaysia Sabah (Project Number: GPRL 006). The authors also gratefully acknowledge Mr. Chin from Penampang, Kota Kinabalu, Sabah, for providing samples of fermented bambangan used in the study.

Author information

Authors and Affiliations

Authors

Contributions

STC carried out the experiments, analyzed data and preparing the draft; BSP analyzed data and corrected the draft; FYC supervised the work and edited the manuscript.

Corresponding author

Correspondence to Fook Yee Chye.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest in this work and publication.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, S.T., Padam, B.S. & Chye, F.Y. Effect of fermentation on the antioxidant properties and phenolic compounds of Bambangan (Mangifera pajang) fruit. J Food Sci Technol 60, 303–314 (2023). https://doi.org/10.1007/s13197-022-05615-w

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-022-05615-w

Keywords

Navigation