Skip to main content
Log in

Recombinant protein G/Au nanoparticles/graphene oxide modified electrodes used as an electrochemical biosensor for Brucella Testing in milk

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In this study, a simple label-free biosensor for Brucella was constructed, which based on the screen-printed carbon electrode (SPCE) modified by Recombinant protein G/gold nanoparticles/graphene oxide (RpG/Au/GO). The impedance responses of the proposed biosensor were measured by electrochemical AC impedance method in Brucella antigen gradient concentration solutions. The results showed that the linear range of this biosensor was from 1.6 × 102 CFU/mL to 1.6 × 108 CFU/mL with the minimum detection limit of 3.2 × 102 CFU/mL (S/N = 3). Moreover, the biosensor for Brucella detection possessed acceptable reproducibility with a relative standard deviation of 5.15% and acceptable stability with a relative standard deviation of 4.68%. The spiked recovery rate in actual pasteurized milk samples was more than 92%. Therefore, the developed biosensor exhibits excellent prospects in the selective quantification detection of Brucella abortus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SPCE:

Screen-printed carbon electrode

RpG:

Recombinant protein G

Au:

Gold nanoparticles

GO:

Graphene oxide

CV:

Cyclic voltammetry

EIS:

Electrochemical impedance spectroscopy

Rct:

Charge transfer resistance

XRD:

X-ray diffraction

SPR:

Surface Plasmon resonance

References

  • Bayramoglu G, Ozalp VC, Oztekin M, Arica MY (2019) Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta 200:263–271. https://doi.org/10.1016/j.talanta.2019.03.048

    Article  CAS  PubMed  Google Scholar 

  • Chammem H, Hafaid I, Bohli N, Garcia A, Meilhac O, Abdelghani A, Mora L (2015) A disposable electrochemical sensor based on protein G for high-density lipoprotein (HDL) detection. Talanta 144:466–473. https://doi.org/10.1016/j.talanta.2015.06.009

    Article  CAS  PubMed  Google Scholar 

  • Chang YJ, Lee MC, Chien YC (2022) Quantitative determination of uric acid using paper-based biosensor modified with graphene oxide and 5-amino-1, 3, 4-thiadiazole-2-thiol. SLAS Technol 27(1):54–62

    Article  Google Scholar 

  • Chauhan P, Raja AN, Jain R (2020) Nanogold modified glassy carbon sensor for the quantification of phytoestrogenchlorogenic acid. Surf Interf 19:100536

    Article  CAS  Google Scholar 

  • Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137. https://doi.org/10.1016/j.elecom.2010.11.033

    Article  CAS  Google Scholar 

  • Chen H, Cui C, Ma X, Yang W, Zuo Y (2020) Amperometric biosensor for Brucella testing through molecular orientation technology in combination with signal amplification technology. ChemElectroChem. 7(12):2672–2679

    Article  CAS  Google Scholar 

  • Dca B, Fan DB, Xue ZB, Bq A, Xw B, Kz B (2022) A universal constructing method for high performance DNA biosensors based on the optimized photoelectrode material and dual recycling amplification. Appl Surf Sci 585:152661

    Article  Google Scholar 

  • De Lima LF, Pereira EA, Ferreira M (2020) Electrochemical sensor for propylparaben using hybrid Layer-by-Layer films composed of gold nanoparticles, poly (ethylene imine) and nickel (II) phthalocyanine tetrasulfonate. Sens Actuators, B Chem 310:127893. https://doi.org/10.1016/j.snb.2020.127893

    Article  CAS  Google Scholar 

  • Dk YENİ, Doğan A (2021) Evaluation of the analytical efficiency of Real-Time PCR in the diagnosis of Brucellosis in cattle and sheep. Kafkas Üniversitesi Veteriner Fakültesi Dergisi 27:503–509

    Google Scholar 

  • Dong XX, Wang Y, Shen YD, Sun MY, Wang H, Lei HT, Xiao ZL, Yang JY, Xu ZL (2015) Nano material based novel electrochemical immunosensor and its application in the field of food safety. J Chinese Inst Food Sci Technol 15:136–146. https://doi.org/10.16429/j.1009-7848.2015.04.019

    Article  CAS  Google Scholar 

  • Gao J, Wang C, Chu Y, Han Y, Gao Y, Wang Y, Zhang Y (2022a) Graphene oxide-graphene Van der Waals heterostructure transistor biosensor for SARS-CoV-2 protein detection. Talanta 240:123197

    Article  CAS  Google Scholar 

  • Gao S, Guisán JM, Rocha-Martin J (2022b) Oriented immobilization of antibodies onto sensing platforms-A critical review. Anal Chim Acta 1189:338907

    Article  CAS  Google Scholar 

  • Guang-Feng W, Yan-Hong Z, Ling C, Lun W (2013) Applications of functional nanomaterials in electrochemical immunosensor. Chin J Analy Chem 41(4):608–615

    Google Scholar 

  • Hezard T, Fajerwerg K, Evrard D, Collière V, Behra P, Gros P (2012) Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg (II) trace analysis. J Electroanal Chem 664:46–52. https://doi.org/10.1016/j.jelechem.2011.10.014

    Article  CAS  Google Scholar 

  • Huang S, Si Z, Li X, Zou J, Yao Y, Weng D (2016) A novel Au/r-GO/TNTs electrode for H2O2, O2 and nitrite detection. Sens Actuators, B Chem 234:264–272. https://doi.org/10.1016/j.snb.2016.04.167

    Article  CAS  Google Scholar 

  • Jafari-Kashi A, Rafiee-Pour HA, Shabani-Nooshabadi M (2022) A new strategy to design label-free electrochemical biosensor for ultrasensitive diagnosis of CYFRA 21–1 as a biomarker for detection of non-small cell lung cancer. Chemosphere 301:134636

    Article  CAS  Google Scholar 

  • Khan S, Ansari ZA, Alothman OY, Fouad H, Ansari SG (2017) Application of amine and copper doped magnesium oxide nanoparticles in electrochemical immunosensors for detecting Brucella abortus. Nanosci Nanotechnol Lett 9(11):1656–1664

    Article  Google Scholar 

  • Khan S, Ansari ZA, Seo HK, Ansari SG (2018) Synthesis and application of Cu-doped nickel and zirconium oxide nanoparticles as Brucella abortus electrochemical device development. Sens Lett 16(4):267–276

    Article  Google Scholar 

  • Li Y, Tang DP (2011) Graphene oxide- thionine and gold nanoparticles- functionalized amperometric biosensor for determination of glucose. J Fuzhou Univ (Natural Science Edition) 39:781–785

    CAS  Google Scholar 

  • Liu S, Haller E, Horak J, Brandstetter M, Heuser T, Lämmerhofer M (2019) Protein A-and Protein G-gold nanoparticle bioconjugates as nano-immunoaffinity platform for human IgG depletion in plasma and antibody extraction from cell culture supernatant. Talanta 194:664–672. https://doi.org/10.1016/j.talanta.2018.10.079

    Article  CAS  PubMed  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170. https://doi.org/10.1021/cr0300789

    Article  CAS  PubMed  Google Scholar 

  • Malathi S, Pakrudheen I, Kalkura SN, Webster TJ, Balasubramanian S (2022) Disposable biosensors based on metal nanoparticles. Sens Int 3:100169

    Article  CAS  Google Scholar 

  • Moon J, Byun J, Kim H, Jeong J, Lim EK, Jung J, Cho S, Cho WK, Kang T (2019) Surface-independent and oriented immobilization of antibody via one-step polydopamine/protein g coating: application to influenza virus immunoassay. Macromol Biosci 19(6):1800486

    Article  Google Scholar 

  • Pérez-Fernández B, de la Escosura Muñiz A (2022) Electrochemical biosensors based on nanomaterials for aflatoxins detection: a review (2015–2021). Anal Chim Acta 1212:339658

    Article  Google Scholar 

  • Robi DT, Gelalcha BD (2020) Epidemiological investigation of brucellosis in breeding female cattle under the traditional production system of Jimma zone in Ethiopia. Veterinary Animal Sci 9:100117. https://doi.org/10.1016/j.vas.2020.100117

    Article  Google Scholar 

  • Sabour S, Arzanlou M, Jeddi F, Azimi T, Hosseini-Asl S, Naghizadeh-Baghi A, Peeri Dogaheh H (2020) Evaluating the efficiency of TaqMan real-time PCR and serological methods in the detection of Brucella spp. in clinical specimens collected from suspected patients in Ardabil, Iran. J Microbiol Methods 175:105982

    Article  CAS  Google Scholar 

  • Satei E, Mirshahabi H, Zeighami H, Gholoobic A, Sadeghi H (2020) Molecular survey of BCSP31 and IS711 using PCR assays in detection of Brucella spp. in raw milk. Meta Gen 24:100683

    Article  Google Scholar 

  • Smith KCA, Oatley CW (1955) The scanning electron microscope and its fields of application. Bri J Appl Phys 6(11):391

    Article  Google Scholar 

  • Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554. https://doi.org/10.1021/cr9502357

    Article  CAS  PubMed  Google Scholar 

  • Wahab R, Khan ST, Ahmad J, Musarrat J, Al-Khedhairy AA (2017) Functionalization of anti-Brucella antibody on ZnO-NPs and their deposition on aluminum sheet towards developing a sensor for the detection of Brucella. Vacuum 146:592–598. https://doi.org/10.1016/j.vacuum.2017.01.019

    Article  CAS  Google Scholar 

  • Wang AJ, Zhu XY, Chen Y, Yuan PX, Luo X, Feng JJ (2019) A label-free electrochemical immunosensor based on rhombic dodecahedral Cu3Pt nanoframes with advanced oxygen reduction performance for highly sensitive alpha-fetoprotein detection. Sens Actuators B Chem 288:721–727

    Article  CAS  Google Scholar 

  • Wang Z, Yang S, Wang Y, Feng W, Li B, Jiao J, Han B, Chen Q (2020) A novel oriented immunosensor based on AuNPs-thionine-CMWCNTs and staphylococcal protein A for interleukin-6 analysis in complicated biological samples. Anal Chim Acta 1140:145–152. https://doi.org/10.1016/j.aca.2020.10.025

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zuo Y, Cui C, Yang W, Ma H, Wang X (2013) Rapid quantitative detection of Brucella melitensis by a label-free impedance immunosensor based on a gold nanoparticle-modified screen-printed carbon electrode. Sensors. 13(7):8551–8563

    Article  CAS  Google Scholar 

  • Yin YY, Hou L, Zhang LL, Lin XB, Wu XP (2018) Electrochemical Immunosensor for Microcystin-LR Detection Based on Nano-composite Material Immobilization and Enzymatic Amplification. Chin J Anal Chem 46:493–501. https://doi.org/10.11895/j.issn.0253-3820.171055

    Article  CAS  Google Scholar 

  • Yin CX (2019) Preparation of electrochemical biosensors based on gold nanocomposites and their application, Qingdao University of Science and Technology.

  • Yuan YF (2014) A study of the characteristics of X-ray technology applications and their current development. J yan’an Vocational Tech Inst 28:123–124

    CAS  Google Scholar 

  • Yuan Q, He J, Niu Y, Chen J, Zhao Y, Zhang Y, Yu C (2018) Sandwich-type biosensor for the detection of α2, 3-sialylated glycans based on fullerene-palladium-platinum alloy and 4-mercaptophenylboronic acid nanoparticle hybrids coupled with Au-methylene blue-MAL signal amplification. Biosens Bioelectro 102:321–327

    Article  CAS  Google Scholar 

  • Zhang SJ, Kang WJ, Niu LM (2019) Electrochemical behavior of dopamine at a biosensor based on a composite of gold nanoparticles and graphene, and its application in dopamine determination. Chem Res Appl. https://doi.org/10.3969/j.issn.1004-1656.2019.09.003

    Article  Google Scholar 

  • Zhang M, Ding Q, Zhu M, Yuan R, Yuan Y (2022) An ultrasensitive electrochemical biosensor with amplification of highly efficient triple catalytic hairpin assembly and tetris hybridization chain reaction. Sens Actuators, B Chem 361:131683

    Article  CAS  Google Scholar 

  • Zhao Z, Sun Y, Li P, Sang S, Zhang W, Hu J, Lian K (2014) A sensitive hydrazine electrochemical sensor based on zinc oxide nano-wires. J Electrochem Soc 161:B157. https://doi.org/10.1149/2.095406jes

    Article  CAS  Google Scholar 

  • Zhao G, Zhou B, Wang X, Shen J, Zhao B (2021) Detection of organophosphorus pesticides by nanogold/mercaptomethamidophos multi-residue electrochemical biosensor. Food Chem 354:129511

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Professor Yueming Zuo for language help in this article.

Funding

Our work has been supported by several organizations. We are sincerely grateful for the financial support from the Project of Youth Fund for Science and Technology Research in Hebei Universities (Grant number: QN2020194), the Project of Youth Fund for National Natural Science Foundation of China (Grant number: 32001791) and the National Natural Science Foundation of China (Grant number 30871445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshuo Chen.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 491 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, H., Cui, C. et al. Recombinant protein G/Au nanoparticles/graphene oxide modified electrodes used as an electrochemical biosensor for Brucella Testing in milk. J Food Sci Technol 59, 4653–4662 (2022). https://doi.org/10.1007/s13197-022-05544-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-022-05544-8

Keywords

Navigation