Skip to main content
Log in

Voltammetric determination of iodide in iodized table salt using cetyltrimethylammonium bromide as ion-pairing

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In this work, voltammetric study based on cetyltrimethylammonium bromide (CTAB) as an ion-pairing agent for the determination of iodine level in iodized table salt has been explored. CTAB was used as an intermediate compound between iodide (I) and the electrode due to its ability to dissociate to produce cetyltrimethylammonium ions ([CTA]+). The [CTA]+ with a long hydrophobic alkyl chain can be directly adsorbed onto the surface of the working electrode, and this in turns coated the electrode with cationic charge and enhance the electrode ability to bind to iodide (I) and other molecular iodine ions. A mixture of iodide and CTAB ([CTA]+I) was prepared and potential of 1.0 V for 60.0 s was applied to pre-concentrate the solution on the working electrode causing the [CTA]+I to oxidize to iodine (I2). The produced I2 immediately react with chloride ion (Cl) from the electrolyte of hydrochloric acid (HCl) to produce I2Cl and form ion-pair with CTA+ as [CTA]+I2Cl. The linear calibration curve of the developed method towards iodide was in the concentration range of 0.5–4.0 mg/L with sensitivity of − 1.383 µA mg/L−1 cm−2 (R2 = 0.9950), limit of detection (LOD) of 0.3 mg/L and limit of quantification (LOQ) of 1.0 mg/L, respectively. The proposed method indicates good agreement with the standard method for iodine determination with recovery range from 95.0 to 104.3%. The developed method provided potential application as a portable on-site iodine detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brugnera MF, Trindade MAG, Zanoni MVB (2010) Detection of bisphenol A on a screen-printed carbon electrode in CTAB micellar medium. Anal Lett 43:2823–2836

    Article  CAS  Google Scholar 

  • Church JA, Dreskin SA (1968) Kinetics of color development in the Landolt (“iodine clock”) reaction. J Phys Chem 72:1387–1390

    Article  CAS  Google Scholar 

  • Fuge R, Johnson CC (2015) Iodine and human health, the role of environmental geochemistry and diet, a review. Appl Geochem 63:282–302

    Article  CAS  Google Scholar 

  • Gaspar V, Showalter K (1987) The oscillatory Landolt reaction. Empirical rate law model and detailed mechanism. J Am Chem Soc 109:4869–4876

    Article  CAS  Google Scholar 

  • Ghosh S, Manna L (2018) The many “facets” of halide ions in the chemistry of colloidal inorganic nanocrystals. Chem Rev 118:7804–7864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Fei J, Hu S (2003) Voltammetric method based on an ion-pairing reaction for the determination of trace amount of iodide at carbon-paste electrodes. Anal Sci 19:681–686

    Article  CAS  PubMed  Google Scholar 

  • Hetzel BS (1983) Iodine deficiency disorders (IDD) and their eradication. Lancet 322:1126–1129

    Article  Google Scholar 

  • Huang X, Li Y, Chen Y, Wang L (2008) Electrochemical determination of nitrite and iodate by use of gold nanoparticles/poly(3-methylthiophene) composites coated glassy carbon electrode. Sens Actuators B Chem 134:780–786

    Article  CAS  Google Scholar 

  • Kocher DC (1981) A dynamic model of the global iodine cycle and estimation of dose to the world population from releases of iodine-129 to the environment. Environ Int 5:15–31

    Article  CAS  Google Scholar 

  • Lim KK, Chan YY, Zainuddin AA et al (2014) Iodine deficiency disorder and Goitre among school children in Sarawak-a nationwide study. Int J Public Heal Res 4:419–424

    Google Scholar 

  • Lim KK, Chan YY, Teh CH et al (2017) Iodine status among pregnant women in rural Sabah, Malaysia. Asia Pac J Clin Nutr 26:861–866

    PubMed  Google Scholar 

  • Mannar MGV, Dunn JT (1995) Salt iodization for the elimination of iodine deficiency. International Council for Control of Iodine Deficiency Disorders, Netherlands

    Google Scholar 

  • National Coordinating Committee on Food and Nutrition (2017) Iodine. In: Recommended nutrient intakes for Malaysia. Ministry of Health Malaysia, Putrajaya, pp 342–355

  • Rasmussen LB, Andersen S, Ovesen L, Laurberg P (2009) Iodine intake and food choice. In: Comprehensive handbook of iodine. Academic Press, Burlington, pp 332–337

  • Rebary B, Paul P, Ghosh PK (2010) Determination of iodide and iodate in edible salt by ion chromatography with integrated amperometric detection. Food Chem 123:529–534

    Article  CAS  Google Scholar 

  • Sangeetha Y, Meenakshi S, Sundaram CS (2016) Synergistic effect of water soluble chitin and iodide ion on the corrosion inhibition of mild steel in acid medium. Adv Mater Lett 7:164–176

    Article  CAS  Google Scholar 

  • Semba RD, Delange* F (2008) Iodine deficiency disorders. In: Nutrition and health in developing countries. Humana Press, Totowa, pp 507–529

  • Švancara I, Konvalina J, Schachl K et al (1998) Stripping voltammetric determination of iodide with synergistic accumulation at a carbon paste electrode. Electroanalysis 10:435–441

    Article  Google Scholar 

  • Švancara I, Ogorevc B, Nović M, Vytřas K (2002) Simple and rapid determination of iodide in table salt by stripping potentiometry at a carbon-paste electrode. Anal Bioanal Chem 372:795–800

    Article  CAS  PubMed  Google Scholar 

  • Teradale AB, Lamani SD, Ganesh PS et al (2017) CTAB immobilized carbon paste electrode for the determination of mesalazine: a cyclic voltammetric method. Sens Bio-Sens Res 15:53–59

    Article  Google Scholar 

  • World Health Organization (2007) Assessment of the iodine deficiency disorders and monitoring their elimination: a guide for programme managers, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  • Yu L, Shi M, Yue X, Qu L (2015) A novel and sensitive hexadecyltrimethyl ammonium bromide functionalized graphene supported platinum nanoparticles composite modified glassy carbon electrode for determination of sunset yellow in soft drinks. Sens Actuators B Chem 209:1–8

    Article  CAS  Google Scholar 

  • Zhu Y, Guan J, Cao L, Hao J (2010) Determination of trace iodide in iodised table salt on silver sulfate-modified carbon paste electrode by differential pulse voltammetry with electrochemical solid phase nano-extraction. Talanta 80:1234–1238

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MB (2009) Iodine deficiency. Endocr Rev 30:376–408

    Article  CAS  Google Scholar 

  • Zimmermann MB, Jooste PL, Pandav CS (2008) Iodine-deficiency disorders. Lancet 372:1251–1262

    Article  CAS  Google Scholar 

  • Zou X, Luo L, Ding Y, Wu Q (2007) Chitosan incorporating cetyltrimethylammonium bromide modified glassy carbon electrode for simultaneous determination of ascorbic acid and dopamine. Electroanalysis 19:1840–1844

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank the Director General of Health Malaysia for his permission to publish this article. We also would like to express our gratitude to the Universiti Putra Malaysia (UPM). This project was funded by the Ministry of Health Malaysia (NMRR-14-502-21091) and partly supported by the Universiti Putra Malaysia (GP-IPS/2018/9652900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Abdullah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamilan, M.A., Abdullah, J., Alang Ahmad, S.A. et al. Voltammetric determination of iodide in iodized table salt using cetyltrimethylammonium bromide as ion-pairing. J Food Sci Technol 56, 3846–3853 (2019). https://doi.org/10.1007/s13197-019-03855-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03855-x

Keywords

Navigation