Skip to main content
Log in

β-Carotene solid dispersion prepared by hot-melt technology improves its solubility in water

  • Short Communication
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

β-Carotene is a member of the carotenoid family and is a red–orange pigment abundantly present in many vegetables and fruits. As an antioxidant, it eliminates excessive reactive oxygen species generated in the body. Accordingly, it has potential to be used in the pharmaceutical, food, and cosmetic industries. β-Carotene has a very low water solubility and low bioavailability; thus, there is a need to develop techniques to overcome these issues. In this study, we aimed to enhance the water solubility of β-carotene by using hot-melt technology, a type of solid dispersions technology. When preparing β-carotene solid dispersion using this method, suitable conditions for the emulsifiers and mixing ratios were investigated using water solubility as an index. Setting the weight ratio of β-carotene:polyvinylpyrrolidone:sucrose fatty acid ester to 10%:70%:20% resulted in the poorly-water soluble β-carotene showing improved water solubility (120 μg/mL). The physicochemical properties of the optimized β-carotene solid dispersion were analyzed using field emission scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction. The solid dispersion was found to have an amorphous structure. The improved solubility observed for β-carotene in the solid dispersions developed in this work may make these dispersions useful as additives in foods or in nutraceutical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Adler C, Schönenberger M, Teleki A, Kuentz M (2016) Molecularly designed lipid microdomains for solid dispersions using a polymer/inorganic carrier matrix produced by hot-melt extrusion. Int J Pharm 499:90–100

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh-Sani M, Hamishehkar H, Khezerlou A et al (2018) Bioemulsifiers derived from microorganisms: applications in the drug and food industry. Adv Pharm Bull 8:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aungst BJ (2017) Optimizing oral bioavailability in drug discovery: an overview of design and testing strategies and formulation options. J Pharm Sci 106:921–929

    Article  CAS  PubMed  Google Scholar 

  • Baghel S, Cathcart H, O’Reilly NJ (2016) Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci 105:2527–2544

    Article  CAS  PubMed  Google Scholar 

  • Craft NE, Soares JH (1992) Relative solubility, stability, and absorptivity of lutein and β-carotene in organic solvents. J Agric Food Chem 40:431–434

    Article  CAS  Google Scholar 

  • DeBoyace K, Wildfong PLD (2018) The application of modeling and prediction to the formation and stability of amorphous solid dispersions. J Pharm Sci 107:57–74

    Article  CAS  Google Scholar 

  • Fan Y, Gao L, Yi J, Zhang Y, Yokoyama W (2017) Development of β-carotene-loaded organogel-based nanoemulsion with improved in vitro and in vivo bioaccessibility. J Agric Food Chem 65:6188–6194

    Article  CAS  PubMed  Google Scholar 

  • Feng D, Peng T, Huang Z et al (2018) Polymer–surfactant system based amorphous solid dispersion: precipitation inhibition and bioavailability enhancement of itraconazole. Pharmaceutics 10:53

    Article  CAS  PubMed Central  Google Scholar 

  • Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson EJ (2002) The role of carotenoids in human health. Nutr Clin Care 5:56–65

    Article  PubMed  Google Scholar 

  • Kaur M, Bawa M, Singh M (2016) β-carotene-β-cyclodextrin inclusion complex: towards enhanced aqueous solubility. J Glob Bio 5:3665–3675

    Google Scholar 

  • Kazarian SG, Martirosyan GG (2002) Spectroscopy of polymer/drug formulations processed with supercritical fluids: in situ ATR-IR and Raman study of impregnation of ibuprofen into PVP. Int J Pharm 232:81–90

    Article  CAS  PubMed  Google Scholar 

  • Lide RD (2005) CRC handbook of chemistry and physics. CRC, Boca Raton

    Google Scholar 

  • Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D (2012) A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharm 2012:436763

    PubMed  PubMed Central  Google Scholar 

  • Martini S, D’Addario C, Bonechi C et al (2010) Increasing photostability and water-solubility of carotenoids: synthesis and characterization of β-carotene-humic acid complexes. J Photochem Photobiol B 101:355–361

    Article  CAS  PubMed  Google Scholar 

  • Piorkowski DT, McClements DJ (2014) Beverage emulsions: recent developments in formulation, production, and applications. Food Hydrocoll 42:5–41

    Article  CAS  Google Scholar 

  • Repka MA, Bandari S, Kallakunta VR et al (2018) Melt extrusion with poorly soluble drugs—an integrated review. Int J Pharm 535:68–85

    Article  CAS  PubMed  Google Scholar 

  • Schierle J, Pietsch B, Ceresa A, Fizet C, Waysek EH (2004) Method for the determination of beta-carotene in supplements and raw materials by reversed-phase liquid chromatography: single laboratory validation. J AOAC Int 87:1070–1082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sethia S, Squillante E (2004) Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm 272:1–10

    Article  CAS  PubMed  Google Scholar 

  • Sutter SC, Buera MP, Elizalde BE (2007) beta-carotene encapsulation in a mannitol matrix as affected by divalent cations and phosphate anion. Int J Pharm 332:45–54

    Article  CAS  PubMed  Google Scholar 

  • Theil F, Anantharaman S, Kyeremateng SO et al (2017) Frozen in time: kinetically stabilized amorphous solid dispersions of nifedipine stable after a quarter century of storage. Mol Pharm 14:183–192

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12:1068–1075

    Article  CAS  Google Scholar 

  • Weber D, Grune T (2012) The contribution of β-carotene to vitamin A supply of humans. Mol Nutr Food Res 56:251–258

    Article  CAS  PubMed  Google Scholar 

  • Yen FL, Wu TH, Tzeng CW, Lin LT, Lin CC (2010) Curcumin nanoparticles improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antihepatoma activities. J Agric Food Chem 58:7376–7382

    Article  CAS  Google Scholar 

  • Zhao C, Cheng H, Jiang P, Yao Y, Han J (2014) Preparation of lutein-loaded particles for improving solubility and stability by polyvinylpyrrolidone (PVP) as an emulsion-stabilizer. Food Chem 156:123–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank BASF Japan Ltd. for technical advice. We thank Dr. Kiyohito Yagi (Osaka University) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mikihiko Nakamura or Shinsaku Nakagawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishimoto, K., Miki, S., Ohno, A. et al. β-Carotene solid dispersion prepared by hot-melt technology improves its solubility in water. J Food Sci Technol 56, 3540–3546 (2019). https://doi.org/10.1007/s13197-019-03793-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03793-8

Keywords

Navigation