Skip to main content
Log in

Optimization of microwave-assisted extraction of bioactive compounds from New Zealand and Chinese Asparagus officinalis L. roots

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The extraction of total phenolics (TPC), total flavonoids content (TFC), total saponins content (TSC), and caffeic acid (AC) contents of asparagus roots extract (ARE) from New Zealand and Chinese AR cultivars was optimized following a microwave-assisted extraction combined with central composite design. The determination of AC was conducted by HPLC in samples extracted under the optimum extraction conditions. The optimal variables for ethanol extraction generated a maximum TPC, TFC and TSC of optimal results for 68.6 mg GAE/g, 11.9 mg RE/g and 0.7 mg SE/g as well as antioxidant power towards β-carotene bleaching assay (%βsc) (57.2%), superoxide anion radical (%O 2−sc ) scavenging capacity (20.1%) and ferric reducing antioxidant power assay (FRAP) (1.63 µmol/g). For methanol, optimum extraction conditions obtained maximum TPC (62.6 mg GAE/g) TFC (10.7 mg RE/g), TSC (0.68 mg SE/g) with %βsc (53.9%), %O 2−sc (19.1%) and FRAP (0.63 µmol/g). The content of caffeic acid from ARE ranged from 0.46 to 2.89 mg/g with ethanol and from 0.41 to 2.64 mg/g with methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Farsi MA, Lee CY (2008) Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 108:977–985

    Article  CAS  PubMed  Google Scholar 

  • Celik S, Erdogan S, Tuzcu M (2009) Caffeic acid phenethyl ester (CAPE) exhibits significant potential as an antidiabetic and liver-protective agent in streptozotocin-induced diabetic rats. Pharmacol Res 60:270–276

    Article  CAS  PubMed  Google Scholar 

  • Chen JH, Ho C (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45:2374–2378

    Article  CAS  Google Scholar 

  • De Vargas FS, Almeida PD, de Boleti APA, Pereira MM, de Souza TP, de Vasconcellos MC, Lima ES (2016) Antioxidant activity and peroxidase inhibition of Amazonian plants extracts traditionally used as anti-inflammatory. BMC Complement Altern Med 16:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan R, Yuan F, Wang N, Gao Y, Huang Y (2015) Extraction and analysis of antioxidant compounds from the residues of Asparagus officinalis L. J Food Sci Technol 52:2690–2700

    Article  CAS  PubMed  Google Scholar 

  • Fang Y (2005) Purification and monosaccharide composition of saponin from Asparagus officianlis L. Chin J Biotechnol 21:446–450

    CAS  Google Scholar 

  • Gan C, Latiff AA (2011) Optimisation of the solvent extraction of bioactive compounds from Parkia speciosa pod using response surface methodology. Food Chem 124:1277–1283

    Article  CAS  Google Scholar 

  • Ghimire BK, Seong ES, Kim EH, Ghimeray AK, Yu CY, Ghimire BK, Chung IM (2011) A comparative evaluation of the antioxidant activity of some medicinal plants popularly used in Nepal. J Med Plant Res 5:1884–1891

    Google Scholar 

  • Guleria S, Tiku A, Singh G, Koul A, Gupta S, Rana S (2013) In vitro antioxidant activity and phenolic contents in methanol extracts from medicinal plants. J Plant Biochem Biotechnol 22:9–15

    Article  CAS  Google Scholar 

  • Hossain M, Sharmin FA, Akhter S, Bhuiyan MA, Shahriar M (2012) Investigation of cytotoxicity and in-vitro antioxidant activity of asparagus racemosus root extract. Int Curr Pharm J 1:250–257

    Article  Google Scholar 

  • Huang XF, Zhang Y, Kong LY (2006) Chemical constituents of Asparagus officinalis. Chin J Nat Med 4:181–184

    CAS  Google Scholar 

  • Jain N, Goyal S, Ramawat K (2011) Evaluation of antioxidant properties and total phenolic content of medicinal plants used in diet therapy during postpartum healthcare in Rajasthan. Int J Pharm Pharm Sci 3:248–253

    Google Scholar 

  • Jentzer JB, Alignan M, Vaca-Garcia C, Rigal L, Vilarem G (2015) Response surface methodology to optimise accelerated solvent extraction of steviol glycosides from Stevia rebaudiana bertoni leaves. Food Chem 166:561–567

    Article  CAS  PubMed  Google Scholar 

  • Kulczyński B, Kobus-Cisowska J, Kmiecik D, Gramza-Michałowska A, Golczak D, Korczak J (2016) Antiradical capacity and polyphenol composition of asparagus spears varieties cultivated under different sunlight conditions. Acta Sci Pol Technol Aliment 15:267–279

    Article  PubMed  Google Scholar 

  • Li H, Deng Z, Wu T, Liu R, Loewen S, Tsao R (2012) Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem 130:928–936

    Article  CAS  Google Scholar 

  • Li J, Nie L, Liu M, Hu S (2015) The study of asparagus different parts’ active ingredients. Food Res Technol 15:006

    Google Scholar 

  • Mandal SC, Lakshmi SM, Sinha S, Murugesan T, Saha B, Pal M (2000) Antitussive effect of Asparagus racemosus root against sulfur dioxide-induced cough in mice. Fitoterapia 71:686–689

    Article  CAS  PubMed  Google Scholar 

  • Negi JS, Singh P, Joshi GP, Rawat MS, Bisht VK (2010) Chemical constituents of asparagus. Pharmacogn Rev 4:215–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwafor PA, Okwuasaba F (2003) Anti-nociceptive and anti-inflammatory effects of methanolic extract of Asparagus pubescens root in rodents. J Ethnopharmacol 84:125–129

    Article  PubMed  Google Scholar 

  • Nwafor PA, Okwuasaba F, Binda L (2000) Antidiarrhoeal and antiulcerogenic effects of methanolic extract of Asparagus pubescens root in rats. J Ethnopharmacol 72:421–427

    Article  CAS  PubMed  Google Scholar 

  • Okutan H, Ozcelik N, Yilmaz HR, Uz E (2005) Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clin Biochem 38:191–196

    Article  CAS  PubMed  Google Scholar 

  • Olthof MR, Hollman PC, Katan MB (2001) Chlorogenic acid and caffeic acid are absorbed in humans. J Nutr 131:66–71

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez R, Jaramillo S, Rodríguez G, Espejo JA, Guillén R, Fernández-Bolaños J, Jiménez A (2005) Antioxidant activity of ethanolic extracts from several asparagus cultivars. J Agric Food Chem 53:5212–5217

    Article  CAS  PubMed  Google Scholar 

  • Routray W, Orsat V (2012) Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol 5:409–424

    Article  CAS  Google Scholar 

  • Shah S, Dhanani T, Kumar S (2013) Comparative evaluation of antioxidant potential of extracts of Vitex negundo, Vitex trifolia, Terminalia bellerica, Terminalia chebula, Embelica officinalis and Asparagus racemosus. Innov J Pharm Pharm Sci 1:44–53

    CAS  Google Scholar 

  • Singh B, Singh N, Thakur S, Kaur A (2017) Ultrasound assisted extraction of polyphenols and their distribution in whole mung bean, hull and cotyledon. J Food Sci Technol 54:921–932

    Article  CAS  PubMed  Google Scholar 

  • Son S, Lewis BA (2002) Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. J Agric Food Chem 50:468–472

    Article  CAS  PubMed  Google Scholar 

  • Subba A, Mandal P (2015) Pharmacognostic studies and in vitro antioxidant potential of traditional polyherbal formulation of west Sikkim with Asparagus Spp. Pharmacogn J 7:6

    Article  CAS  Google Scholar 

  • Sun T, Powers J, Tang J (2007) Evaluation of the antioxidant activity of asparagus, broccoli and their juices. Food Chem 105:101–106

    Article  CAS  Google Scholar 

  • Wang H, Provan GJ, Helliwell K (2004) Determination of rosmarinic acid and caffeic acid in aromatic herbs by HPLC. Food Chem 87:307–311

    Article  CAS  Google Scholar 

  • Yang B, Liu X, Gao Y (2009) Extraction optimization of bioactive compounds (crocin, geniposide and total phenolic compounds) from Gardenia (Gardenia jasminoides Ellis) fruits with response surface methodology. Innov Food Sci Emerg Technol 10:610–615

    Article  CAS  Google Scholar 

  • Zhang D, Zhang J, Che W, Wang Y (2016) A new approach to synthesis of benzyl cinnamate: optimization by response surface methodology. Food Chem 206:44–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The financial support from the research Grant (Ref. 2014BAD04B00) of the Food Science and Pharmacy College of Xinjiang Agriculture University, China) to this project is highly appreciated. The authors would also like to thank the Dr. Xiaohong Wang of the Department of Veterinary Medicine for providing the facilities for this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongxia Zhang or Alaa El-Din Bekhit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Supplementary material 2 (DOCX 4684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Birch, J., Ma, Z.F. et al. Optimization of microwave-assisted extraction of bioactive compounds from New Zealand and Chinese Asparagus officinalis L. roots. J Food Sci Technol 56, 799–810 (2019). https://doi.org/10.1007/s13197-018-3540-0

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-018-3540-0

Keywords

Navigation