Skip to main content
Log in

Effects of osmotic dehydration treatment on volatile compound (Myristicin) content and antioxidants property of nutmeg (Myristica fragrans) pericarp

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The effects of osmotic dehydration (OD) treatment on volatile compound (myristicin) content and the antioxidant capacity of nutmeg (Myristica fragrans) were studied. Fresh nutmeg pericarps were treated with varying sugar concentrations (60, 70, 80%) with different soaking periods at ambient temperature. The OD-treated nutmeg extracts were analyzed for myristicin content via Gas Chromatography Flame Ionization Detector. The phenolic content and antioxidant capacity were analyzed using Follin–Ciocalteu and a free radical scavenging activity assay. The myristicin content was highest (1.69 mg/100 mg) at 80% sugar concentration after 3 h of soaking. Total phenolic content and free radical scavenging activity were highest at 3 h of 80% sugar solution treatment with values of 76.90% and 1.75 mg GAE/g, respectively. OD treatment at varying sugar concentration levels and durations affects the production of myristicin and antioxidant composition. Treatment of nutmeg with OD at 80% sugar concentration for 3 h is preferable, resulting in an acceptable level of myristicin and high antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

OD:

Osmotic dehydration

TPC:

Total phenolic content

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

GC-FID:

Gas chromatography flame ionization detector

GAE:

Gallic acid equivalent

References

  • Ahmed IA, Mikail MA, Bin Ibrahim M, Bin Hazali N, Rasad MSBA, Ghani RA, Yahya MNA (2015) Antioxidant activity and phenolic profile of various morphological parts of underutilised Baccaurea angulata fruit. Food Chem 172:778–787

    Article  CAS  Google Scholar 

  • Ali HS, Moharram HA, Ramadan MT, Ragab GH (2010) Osmotic dehydration of banana rings and tomato halves. J Am Sci 6(9):383–390

    Google Scholar 

  • Almeida JAR, Mussi LP, Oliveira DB, Pereira NR (2014) Effect of temperature and sucrose concentration on the retention of polyphenol compounds and antioxidant activity of osmotically dehydrated bananas. J Food Process Preserv 39:1061–1069

    Article  Google Scholar 

  • Alothman M, Bhat R, Karim AA (2009) Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem 115(3):785–788

    Article  CAS  Google Scholar 

  • Assa J, Widjanarko S, Kusnadi J, Berhimpon S (2014) Antioxidant potential of flesh, seed and mace of nutmeg (Myristica fragrans Houtt). Int J Chem Tech 6(4):2460–2468

    CAS  Google Scholar 

  • Benmeziane F, Djamai R, Cadot Y, Seridi R (2014) Optimization of extraction parameters of phenolic compounds from Algerian fresh table grapes (Vitis Vinifera). Int Food Res J 21(3):1025–1029

    Google Scholar 

  • Carstairs S, Cantrell PL (2011) The spice of life an analysis of nutmeg exposures in California. Clin Toxicol 49:177–180

    Article  Google Scholar 

  • Chavan UD, Amarowicz R (2012) Osmotic dehydration process for preservation of fruits and vegetables. J Food Res 1(2):202–209

    Article  Google Scholar 

  • Chedgy RJ, Köllner TG, Constabel CP (2015) Functional characterization of two acyltransferases from Populus trichocarpa capable of synthesizing benzyl benzoate and salicyl benzoate, potential intermediates in salicinoid phenolic glycoside biosynthesis. Phytochemistry 113:149–159

    Article  CAS  Google Scholar 

  • Chiralt A, Talens P (2005) Physical and chemical changes induced by osmotic dehydration in plant tissues. J Food Eng 67(1–2):167–177

    Article  Google Scholar 

  • Dawidowicz AL, Dybowski MP (2012) Determination of myristicin in commonly spices applying SPE/GC. Food Chem Toxicol 50(7):2362–2367

    Article  CAS  Google Scholar 

  • Dawidowicz AL, Dybowski MP (2013) Simple and rapid determination of myristicin in human serum. Ift Bas Sym 31(1):119–123

    CAS  Google Scholar 

  • Devic E, Guyot S, Daudin JD, Bonazzi C (2010) Effect of temperature and cultivar on polyphenol retention and mass transfer during osmotic dehydration of apples. J Agr Food Chem 58(1):606–614

    Article  CAS  Google Scholar 

  • Ehrenpreis JE, Lauriers CD, Lank P (2014) Nutmeg poisonings: a restropective review of 10 years experience from the Illinois Poison Centre, 2001–2011. J Med Toxicol 10:148–151

    Article  CAS  Google Scholar 

  • Escriche I, Chiralt A, Moreno J, Serra JA (2000) Influence of blanching-osmotic dehydration treatments on volatile fraction of strawberries. J Food Sci 65(7):1107–1111

    Article  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2003) Airborne signals prime plants against insect herbivore attack. PNAS 101(6):1781–1785

    Article  Google Scholar 

  • Gethins L, Guneser O, Demirkol A, Rea MC, Stanton C, Ross RP, Yuceer Y, Morrissey JP (2015) Influence of carbon and nitrogen source on production of volatile fragrance and flavour metabolites by the yeast Kluyveromyces marxianus. Yeast 32:67–76

    CAS  Google Scholar 

  • Gupta AD, Bansal VK, Babu V, Maithil N (2013) Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J Genet Eng Biotechnol 11(1):25–31

    Article  Google Scholar 

  • Hewage DDN, Vithana MDK (2013) Development and evaluation of different flavoured medicinal beverages from peeled and non-peeled nutmeg (Myristica fragrans L.) pericarp. In: Proceedings of 12th agricultural research symposium, pp 104–107

  • Kebe M, Renard CMCG, Amani GNG (2014) Kinetics of apple polyphenol diffusion in solutions with different osmotic strengths. J Agr Food Chem 62:9841–9847

    Article  CAS  Google Scholar 

  • Kucner A, Klewicki R, Sojka M (2013) The influence of selected osmotic dehydration and pretreatment parameters on dry matter and polyphenol content in highbush blueberry (Vaccinium corymbosum L.) fruits. Food Bioprocess Tech 6:2031–2047

    Article  CAS  Google Scholar 

  • Lima RK, Cardoso MDG, Andrade MA, Guimarães PL, Batista LR, Nelson DL (2011) Bactericidal and antioxidant activity of essential oils from Myristica fragrans Houtt and Salvia microphylla H.B.K. J Am Oil Chem Soc 89(3):523–528

    Article  Google Scholar 

  • Najafi AH, Yusof YA, Rahman RA, Ganjloo A, Ling CN (2014) Effect of osmotic dehydration process using sucrose solution at mild temperature on mass transfer and quality attributes of red pitaya (Hylocereus polyrhizusis). Int Food Res J 21(2):625–630

    Google Scholar 

  • Nurul SR, Asmah R (2012) Evaluation of antioxidant properties in fresh and pickled papaya. Int Food Res J 19(3):1117–1124

    CAS  Google Scholar 

  • Patthamakanokporn O, Puwastien P, Nitithamyong A, Sirichakwal PP (2008) Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. J Food Compos Anal 21(3):241–248

    Article  CAS  Google Scholar 

  • Quin GI, Fanning NF, Plunkett PK (1998) Nutmeg intoxication. J Accid Emerg Med 15(4):287–288

    Article  CAS  Google Scholar 

  • Scalzo RL, Papadimitriu C, Bertolo G, Maestrelli A, Torreggiani D (2001) Influence of cultivar and osmotic dehydration time on aroma profiles of muskmelon (Cucumis melo, cv reticulatus Naud.) spheres. J Food Eng 49:261–264

    Article  Google Scholar 

  • Sultana B, Anwar F, Ashraf M (2009) Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14(6):2167–2180

    Article  CAS  Google Scholar 

  • Tan K (2013) Comparison of antioxidant components and antioxidant capacity in different parts of nutmeg (Myristica fragrans). Int Food Res J 20(1):1049–1052

    Google Scholar 

  • Torres JD, Talens P, Carot JM, Chiralt A, Escriche I (2007) Volatile profile of mango (Mangifera indica L.), as affected by osmotic dehydration. Food Chem 101(1):219–228

    Article  CAS  Google Scholar 

  • Xie J, Schaich KM (2014) Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J Agr Food Chem 62(19):4251–4260

    Article  CAS  Google Scholar 

  • Yadav AK, Singh SV (2012) Osmotic dehydration of fruits and vegetables: a review. J Food Technol 51:1–20

    Google Scholar 

  • Yao Y, Sang W, Zhou M, Ren G (2009) Phenolic composition and antioxidant activities of 11 celery cultivars. J Food Sci 75(1):9–13

    Article  Google Scholar 

  • Zhao JH, Liu F, Pang XL, Xiao HW, Ni YY (2016) Effects of different osmo-dehydrofreezing treatments on the volatile compounds, phenolic compounds and physicochemical properties in mango (Mangifera indica L.). Int J Food Sci Tech 51:1441–1448

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rahman N. thanks MyBrain for financial support during the period of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazilah Ariffin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, N., Xin, T.B., Kamilah, H. et al. Effects of osmotic dehydration treatment on volatile compound (Myristicin) content and antioxidants property of nutmeg (Myristica fragrans) pericarp. J Food Sci Technol 55, 183–189 (2018). https://doi.org/10.1007/s13197-017-2883-2

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2883-2

Keywords

Navigation