Journal of Food Science and Technology

, Volume 55, Issue 1, pp 418–423 | Cite as

Effect of the essential oils from Melaleuca alternifolia, Melaleuca quinquenervia and Backhousia citriodora on the synthesis of ochratoxin A by Aspergillus niger and Aspergillus carbonarius isolated from tropical wine grapes

  • Juliana de Andrade Santiago
  • Maria das Graças CardosoEmail author
  • Luis Roberto Batista
  • Wilder Douglas Santiago
  • Fabiana Reinis Franca Passamani
  • Leonardo Milani Avelar Rodrigues
  • David Lee Nelson
Short Communication


The influence of essential oils (EOs) extracted from the leaves of Melaleuca alternifolia, Melaleuca quinquenervia and Backhousia citriodora on ochratoxin A (OTA) synthesis by fungi was studied. The extraction of EOs was performed by hydrodistillation (Clevenger apparatus) over a 2-h period and subsequently analyzed by GC–MS and GC–FID. The toxigenic activity of the essential oils (31.25; 15.62 and 7.81 µg mL−1) was evaluated by inhibiting the production of OTA by Aspergillus niger and Aspergillus carbonarius in Czapek agar medium culture. The quantification of the toxin was performed by HPLC. The production of OTA was dependent on the fungal species, incubation temperature (15 and 25 °C) and the presence of the essential oils. In tests carried out at 15 °C, the oils caused a reduction in OTA synthesis that ranged from 57.60 to 76.93% and from 54.78 to 98.68% for the fungal species A. carbonarius and A. niger, respectively. At 25 °C, reductions ranged from the 38.66 to 75.93% and from 17.94 to 71.79% for the respective fungi. The study concluded that natural products could be potential biocontrol agents against OTA contamination in food.


Natural products Myrtaceae Fungi Mycotoxins 



The authors thanks the support of the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).


  1. Agência Nacional de Vigilância Sanitária (2010) Farmacopeia Brasileira, 5th edn. Agência Nacional de Vigilância Sanitária, Brasília, pp 198–199Google Scholar
  2. Bizzo HR, Hovell AMC, Rezende CM (2009) Óleos essenciais no Brasil: aspectos gerais, desenvolvimento e perspectivas. Quim Nova 32:588–594. doi: 10.1590/S0100-40422009000300005 CrossRefGoogle Scholar
  3. Carson CF, Hammer KA, Riley TV (2006) Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19:50–62. doi: 10.1128/CMR.19.1.50-62.2006 CrossRefGoogle Scholar
  4. Castellá G, Alborch L, Bragulat MR, Cabañes FJ (2015) Real time quantitative expression study of a polyketide synthase gene related to ochratoxin a biosynthesis in Aspergillus niger. Food Control 53:147–150. doi: 10.1016/j.foodcont.2015.01.026 CrossRefGoogle Scholar
  5. Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotec 35:1039–1042. doi: 10.1590/S1413-70542011000600001 CrossRefGoogle Scholar
  6. Gallo A, Knox BP, Bruno KS, Solfrizzo M, Baker SE, Perrone G (2014) Identification and characterization of the polyketide synthase involved in ochratoxin A biosynthesis in Aspergillus carbonarius. Int J Food Microbiol 2:10–17. doi: 10.1016/j.ijfoodmicro.2014.03.013 CrossRefGoogle Scholar
  7. Garcia D, Ramos AJ, Sanchis V, Marín S (2011) Is intraspecific variability of growth and mycotoxin production dependent on environmental conditions? A study with Aspergillus carbonarius isolates. Int J Food Microbiol 144:432–439. doi: 10.1016/j.ijfoodmicro.2010.10.030 CrossRefGoogle Scholar
  8. Harris DC (2008) Análise química quantitativa. LTC, Rio de JaneiroGoogle Scholar
  9. Hua H, Xing F, Selvaraj JN, Wang Y, Zhao Y, Zhou L, Liu X, Liu Y (2014) Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxin A production. PLoS ONE 9:1–10. doi: 10.1371/journal.pone.0108285 Google Scholar
  10. Jersek B, Ulrih NP, Skrt M, Gavarić N, Božin B, Možina SS (2014) Effects of selected essential oils on the growth and production of ochratoxin A by Penicillium verrucosum. Arch Ind Hyg Toxicol 65:199–208. doi: 10.2478/10004-1254-65-2014-2486 Google Scholar
  11. Lazar-Baker EE, Hetherington SD, Ku VV, Newman SM (2011) Evaluation of commercial essential oil samples on the growth of postharvest pathogen Monilinia fructicola (G. Winter) honey. Lett Appl Microbiol 52:227–232. doi: 10.1111/j.1472-765X.2010.02996.x CrossRefGoogle Scholar
  12. Lucini EI, Zunino MP, López ML, Zygadlo JA (2006) Effect of monoterpenes on lipid composition and sclerotial development of Sclerotium cepivorum Berk. J Phytopathol 154:441–446. doi: 10.1111/j.1439-0434.2006.01126.x CrossRefGoogle Scholar
  13. Magan N, Medina A, Aldred D (2011) Possible climate-change effects on mycotoxin contaminant of food crops pre and postharvest. Plant Pathol 60:150–163. doi: 10.1111/j.1365-3059.2010.02412.x CrossRefGoogle Scholar
  14. Padovan A, Keszei A, Köllner TG, Degenhardt J, Foley WJ (2010) The molecular basis of host plant selection in Melaleuca quinquenervia by a successful biological control agent. Phytochemistry 71:1237–1244. doi: 10.1016/j.phytochem.2010.05.013 CrossRefGoogle Scholar
  15. Passamani FR, Hernandes T, Lopes NA, Bastos SC, Santiago WD, Cardoso MG, Batista LR (2014) Effect of temperature, water activity, and pH on growth and production of ochratoxin A by Aspergillus niger and Aspergillus carbonarius from Brazilian grapes. J Food Prot 77:1947–1952. doi: 10.4315/0362-028X.JFP-13-495 CrossRefGoogle Scholar
  16. Sokolić-Mihalak D, Frece J, Slavica A, Delaš F, Pavlović H, Markov K (2012) The effects of wild thyme (Thymus serpyllum L.) essential oil components against ochratoxin-producing Aspergilli. Arch Ind Hyg Toxicol 63:457–462. doi: 10.2478/10004-1254-63-2012-2309 Google Scholar
  17. Sonker N, Pandey AK, Singh P, Tripathi NN (2014) Assessment of Cymbopogon citratus (DC.) stapf essential oil as herbal preservatives based on antifungal, antiaflatoxin, and antiochratoxin activities and in vivo efficacy during storage. J Food Sci 79:628–634. doi: 10.1111/1750-3841.12390 CrossRefGoogle Scholar
  18. Terzi V, Morcia C, Faccioli P, Valè G, Tacconi G, Malnati M (2007) In vitro antifungal activity of the tea tree (Melaleuca alternifolia) essential oil and its major components against plant pathogens. Lett Appl Microbiol 44:613–618. doi: 10.1111/j.1472-765X.2007.02128.x CrossRefGoogle Scholar
  19. Wang H, Liu Y, Wei S, Yan Z (2012) Comparative seasonal variation and chemical composition of essential oils from the leaves and stems of Schefflera heptaphylla using microwave-assisted and conventional hydrodistillation. Ind Crops Prod 36:229–237. doi: 10.1016/j.indcrop.2011.09.011 CrossRefGoogle Scholar
  20. Yamamoto-Ribeiro MM, Grespan R, Kohiyama CY, Ferreira FD, Mossini SA, Silva EL, Filho BA, Mikcha JM, Machinski M Jr (2013) Effect of Zingiber officinale essential oil on Fusarium verticillioides and fumonisin production. Food Chem 141:3147–3152. doi: 10.1016/j.foodchem.2013.05.144 CrossRefGoogle Scholar

Copyright information

© Association of Food Scientists & Technologists (India) 2017

Authors and Affiliations

  • Juliana de Andrade Santiago
    • 1
  • Maria das Graças Cardoso
    • 1
    Email author
  • Luis Roberto Batista
    • 2
  • Wilder Douglas Santiago
    • 1
  • Fabiana Reinis Franca Passamani
    • 2
  • Leonardo Milani Avelar Rodrigues
    • 2
  • David Lee Nelson
    • 3
  1. 1.Department of ChemistryFederal University of LavrasLavrasBrazil
  2. 2.Department of Food ScienceFederal University of LavrasLavrasBrazil
  3. 3.Federal University of Vales de Jequitinhonha e MucuriDiamantinaBrazil

Personalised recommendations