Skip to main content

Advertisement

Log in

Effect of walnut protein hydrolysate on scopolamine-induced learning and memory deficits in mice

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

A walnut protein hydrolysate (WPH) was prepared by using a mixture of pancreatin and viscozyme L from industrially available defatted walnut meal. The antioxidant effects of WPH were confirmed and quantified by reducing power, oxygen radical absorbance capacity, hydroxyl radical radical-scavenging activity and ABTS+· radical-scavenging activity assays. The protective effects of WPH on scopolamine-induced learning and memory deficits in mice were also evaluated based on in vivo behavioral tests. Results showed that WPH administration would lead to significantly decreased latencies while increased crossing times and target times in the spatial probe test, and increased escape latency and decreased error times in the step-down avoidance test for the scopolamine-induced dementia mice. Biochemical results indicated that the ameliorative effects of WPH on scopolamine-induced dementia mice could be attributed to the significantly increased amount of acetylcholine receptors. Therefore, WPH may be a potential therapeutic agent against Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Chen N, Yang H, Sun Y, Niu J, Liu S (2012) Purification and identification of antioxidant peptides from walnut (Juglans regia L.) protein hydrolysates. Peptides 38:344–349

    Article  CAS  Google Scholar 

  • Chung SK, Osawa T, Kawakishi S (1997) Hydroxyl radical-scavenging effects of spices and scavengers from brown mustard (Brassica nigra). Biosci Biotech Bioch 61:118–123

    Article  CAS  Google Scholar 

  • Dávalos A, Gómez-Cordovés C, Bartolomé B (2004) Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem 52:48–54

    Article  Google Scholar 

  • Ebert U, Kirch W (1998) Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Invest 28:944–949

    Article  CAS  Google Scholar 

  • Guan X, Yao H (2008) Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem 106:345–351

    Article  CAS  Google Scholar 

  • Haider S, Batool Z, Tabassum S, Perveen T, Saleem S, Naqvi F, Javed H, Haleem DJ (2011) Effects of walnuts (Juglans regia) on learning and memory functions. Plant Food Hum Nut 66:335–340

    Article  CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases. Drug Aging 18:685–716

    Article  CAS  Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Brit J Pharmacl 142:231–255

    Article  CAS  Google Scholar 

  • Jang YJ, Kim J, Shim J, Kim C-Y, Jang J-H, Lee KW, Lee HJ (2013) Decaffeinated coffee prevents scopolamine-induced memory impairment in rats. Behav Brain Res 245:113–119

    Article  CAS  Google Scholar 

  • Kumar H, More SV, Han SD, Choi JY, Choi DK (2012) Promising therapeutics with natural bioactive compounds for improving learning and memory—a review of randomized trials. Molecules 17:10503–10539

    Article  CAS  Google Scholar 

  • Liu M, Du M, Zhang Y, Xu W, Wang C, Wang K, Zhang L (2013) Purification and identification of an ACE inhibitory peptide from walnut protein. J Agric Food Chem 61:4097–4100

    Article  CAS  Google Scholar 

  • Lu R-R, Qian P, Sun Z, Zhou X-H, Chen T-P, He J-F, Zhang H, Wu J (2010) Hempseed protein derived antioxidative peptides: purification, identification and protection from hydrogen peroxide-induced apoptosis in PC12 cells. Food Chem 123:1210–1218

    Article  CAS  Google Scholar 

  • Ma Y, Xiong YL (2009) Antioxidant and bile acid binding activity of buckwheat protein in vitro digests. J Agric Food Chem 57:4372–4380

    Article  CAS  Google Scholar 

  • Miller J, Young C (1977) Protein nutritional quality of Florunner peanut meal as measured by rat bioassay. J Agric Food Chem 25:653–657

    Article  CAS  Google Scholar 

  • Nie K, Yu JC, Fu Y, Cheng HY, Chen FY, Qu Y, Han JX (2009) Age-related decrease in constructive activation of Akt/PKB in SAMP10 hippocampus. Biochem Bioph Res Co 378:103–107

    Article  CAS  Google Scholar 

  • Nilsang S, Lertsiri S, Suphantharika M, Assavanig A (2005) Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. J Food Eng 70:571–578

    Article  Google Scholar 

  • Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, Wataya T, Shimohama S (2001) Oxidative damage is the earliest event in Alzheimer disease. J Neuropath Exp Neur 60:759–767

    Article  CAS  Google Scholar 

  • Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M (2011) Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 219:197–204

    Article  CAS  Google Scholar 

  • Park D, Lee HJ, Joo SS, Bae DK, Yang G, Yang YH, Lim I, Matsuo A, Tooyama I, Kim YB (2012) Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol 234:521–526

    Article  CAS  Google Scholar 

  • Pihlanto A (2006) Antioxidative peptides derived from milk proteins. Int Dairy J 16:1306–1314

    Article  CAS  Google Scholar 

  • Poulose SM, Bielinski DF, Shukitt-Hale B (2013) Walnut diet reduces accumulation of polyubiquitinated proteins and inflammation in the brain of aged rats. J Nutr Biochem 24:912–919

    Article  CAS  Google Scholar 

  • Richard T, Pawlus AD, Iglésias ML, Pedrot E, Waffo-Teguo P, Mérillon JM, Monti JP (2011) Neuroprotective properties of resveratrol and derivatives. Ann N Y Acad Sci 1215:103–108

    Article  CAS  Google Scholar 

  • Smith C, Carney JM, Starke-Reed P, Oliver C, Stadtman E, Floyd R, Markesbery W (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88:10540–10543

    Article  CAS  Google Scholar 

  • Smith R, Chung H, Rundquist S, Maat-Schieman ML, Colgan L, Englund E, Liu YJ, Roos RA, Faull RL, Brundin P (2006) Cholinergic neuronal defect without cell loss in Huntington’s disease. Hum Mol Genet 15:3119–3131

    Article  CAS  Google Scholar 

  • Su G, Zhao T, Zhao Y, Sun-Waterhouse D, Qiu C, Huang P, Zhao MM (2016) Effect of anchovy (coilia mystus) protein hydrolysate and its maillard reaction product on combating memory-impairment in mice. Food Res Int 82:112–120

    Article  CAS  Google Scholar 

  • Tota S, Nath C, Najmi AK, Shukla R, Hanif K (2012) Inhibition of central angiotensin converting enzyme ameliorates scopolamine induced memory impairment in mice: role of cholinergic neurotransmission, cerebral blood flow and brain energy metabolism. Behav Brain Res 232:66–76

    Article  CAS  Google Scholar 

  • Vakalopoulos C (2013) A cholinergic hypothesis of the unconscious in affective disorders. Front in Neurosci 7:220

    Article  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  Google Scholar 

  • Vellom DC, Radić Z, Li Y, Pickering NA, Camp S, Taylor P (1993) Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochem 32:12–17

    Article  CAS  Google Scholar 

  • Wesnes K, Simpson P, Kidd A (1988) An investigation of the range of cognitive impairments induced by scopolamine 0.6 mg s.c. Hum Psychopharmacol Clin Exp 3:27–41

    Article  Google Scholar 

  • Zandi PP, Anthony JC, Khachaturian AS, Stone SV, Gustafson D, Tschanz JT, Norton MC, Welsh-Bohmer KA, Breitner JC (2004) Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol 61:82–88

    Article  Google Scholar 

  • Zhang J, Xu J, Liu L, Liu Y, Zhao T, Wu C, Sun-Waterhouse D, Zhao M, Su G (2016) Physicochemical and sensory characteristics of soya protein isolate hydrolysates with added substrate-like amino acids. Int J Food Sci Tech 51:69–77

    Article  CAS  Google Scholar 

  • Zheng L, Su G, Ren J, Gu L, You L, Zhao M (2012) Isolation and characterization of an oxygen radical absorbance activity peptide from defatted peanut meal hydrolysate and its antioxidant properties. J Agric Food Chem 60:5431–5437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Strategic Emerging Industry Key Scientific and Technological Program of Guangdong Province (No. 2012A080800014), Guangzhou Science and Technology Plan Projects (No. 201604020122) and special funds for public welfare research and capacity building in Guangdong Province (NO. 2014B020204001) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowan Su.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhao, T., Zhang, J. et al. Effect of walnut protein hydrolysate on scopolamine-induced learning and memory deficits in mice. J Food Sci Technol 54, 3102–3110 (2017). https://doi.org/10.1007/s13197-017-2746-x

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2746-x

Keywords

Navigation