Skip to main content
Log in

Effect of particle size on antioxidant activity and catechin content of green tea powders

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

This work evaluated the effect of grinding and sieving process of green tea leaves on particle size distribution and antioxidant activity. Granulometric classes ranging from 20 μm to 500 μm were studied. Hydroalcoholic extracts of green tea powders (GTPs) were analysed for total phenolic, total flavonoid, and catechin contents. The fraction of 100–180 μm ground at 6000 rpm showed the maximum catechin content with 33.5 mg/g dry matter (DM) and, the best antioxidant activity with IC50 values of 0.28 μg/mL and 0.13 μg/mL using DPPH and ABTS radical scavenging assays, respectively. However, antioxidant properties and catechin content decreased for particle of sizes less than 50 μm. Catechin content was higher for those ground at 6000 rpm as compared to at 18,000 rpm. The best grinding conditions and particle size were 6000 rpm and 100–180 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnwal P, Singh KK, Sharma A, et al. (2015) Influence of pin and hammer mill on grinding characteristics, thermal and antioxidant properties of coriander powder. J Food Sci Technol:1–12. doi:10.1007/s13197-015-1975-0

  • Baudelaire E. (2013) Brevet WO2013057379A1 - Procede Ptc Pour l’extraction Par Voie Seche Des Principes Actifs Naturels - Google Brevets http://www.google.com/patents/WO2013057379A1?cl=fr.

  • Burin VM, Ferreira-Lima NE, Panceri CP, Bordignon-Luiz MT (2014) Bioactive compounds and antioxidant activity of Vitis vinifera and Vitis labrusca grapes: evaluation of different extraction methods. Microchem J 114:155–163. doi:10.1016/j.microc.2013.12.014

    Article  CAS  Google Scholar 

  • Chen G, Chen H (2011) Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion. Food Chem 126:1934–1938. doi:10.1016/j.foodchem.2010.12.025

    Article  CAS  Google Scholar 

  • Chengelis CP, Kirkpatrick JB, Regan KS, et al. (2008) 28-day oral (gavage) toxicity studies of green tea catechins prepared for beverages in rats. Food Chem Toxicol 46:978–989

    Article  CAS  Google Scholar 

  • Chen Z, Zhu QY, Tsang D, Huang Y (2001) Degradation of green tea catechins in tea drinks. J Agric Food Chem 49:477–482. doi:10.1021/jf000877h

    Article  CAS  Google Scholar 

  • Cook NC, Samman S (1996) Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem 7:66–76. doi:10.1016/S0955-2863(95)00168-9

    Article  CAS  Google Scholar 

  • Czyzowska A, Klewicka E, Pogorzelski E, Nowak A (2015) Polyphenols, vitamin C and antioxidant activity in wines from Rosa canina L. and Rosa rugosa thunb. J Food Compos Anal 39:62–68. doi:10.1016/j.jfca.2014.11.009

    Article  CAS  Google Scholar 

  • Davis JM, Murphy EA, Carmichael MD, Davis B (2009) Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Phys Regul Integr Comp Phys 296:R1071–R1077. doi:10.1152/ajpregu.90925.2008

    CAS  Google Scholar 

  • Dufresne CJ, Farnworth ER (2001) A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 12:404–421

    Article  CAS  Google Scholar 

  • Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143. doi:10.1080/10408690390826464

    Article  CAS  Google Scholar 

  • Hu J, Chen Y, Ni D (2012) Effect of superfine grinding on quality and antioxidant property of fine green tea powders. LWT Food Sci Technol 45:8–12. doi:10.1016/j.lwt.2011.08.002

    Article  CAS  Google Scholar 

  • Jouad H, Lacaille-Dubois MA, Lyoussi B, Eddouks M (2001) Effects of the flavonoids extracted from Spergularia purpurea pers. on arterial blood pressure and renal function in normal and hypertensive rats. J Ethnopharmacol 76:159–163. doi:10.1016/S0378-8741(01)00209-4

    Article  CAS  Google Scholar 

  • Khokhar S, Magnusdottir SGM (2002) Total phenol, catechin, and caffeine contents of teas commonly consumed in the United Kingdom. J Agric Food Chem 50:565–570. doi:10.1021/jf010153l

    Article  CAS  Google Scholar 

  • Kim D-O, Lee KW, Lee HJ, Lee CY (2002) Vitamin C Equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J Agric Food Chem 50:3713–3717. doi:10.1021/jf020071c

    Article  CAS  Google Scholar 

  • Kurita T, Miyagishima A, Nozawa Y, et al. (2004) A dosage design of mitomycin C tablets containing finely powdered green tea. Int J Pharm 275:279–283. doi:10.1016/j.ijpharm.2004.01.037

    Article  CAS  Google Scholar 

  • Kuriyama S (2008) The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J Nutr 138:1548S–1553S

    CAS  Google Scholar 

  • Lee KJ, Lee SH (2008) Extraction behavior of caffeine and EGCG from green and black tea. Biotechnol Bioprocess Eng 13:646–649. doi:10.1007/s12257-008-0034-3

    Article  CAS  Google Scholar 

  • Lu T-M, Lee C-C, Mau J-L, Lin S-D (2010) Quality and antioxidant property of green tea sponge cake. Food Chem 119:1090–1095

    Article  CAS  Google Scholar 

  • Maaroufi C, Melcion J-P, de Monredon F, et al. (2000) Fractionation of pea flour with pilot scale sieving. I. physical and chemical characteristics of pea seed fractions. Anim Feed Sci Technol 85:61–78. doi:10.1016/S0377-8401(00)00127-9

    Article  CAS  Google Scholar 

  • Muanda F, Koné D, Dicko A, et al. (2011) Phytochemical composition and antioxidant capacity of Three Malian Medicinal Plant parts. Evid Based Complement Alternat Med 2011:1–8. doi:10.1093/ecam/nep109

    Google Scholar 

  • Muanda FN, Bouayed J, Djilani A, et al (2010) Chemical composition and, cellular evaluation of the antioxidant activity of Desmodium adscendens leaves. Evid Based Complement Alternat Med 2011:e620862.

  • Murase T, Nagasawa A, Suzuki J, et al. (2002) Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int J Obes 26:1459–1464. doi:10.1038/sj.ijo.0802141

    Article  CAS  Google Scholar 

  • Murthy Ct, Rani M, Rao P n. S (1999) Optimal grinding characteristics of black pepper for essential oil yield. J Food Process Eng 22:161–173. doi:10.1111/j.1745-4530.1999.tb00478.x

    Article  Google Scholar 

  • Neilson AP, Hopf AS, Cooper BR, et al. (2007) Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in Vitro digestion. J Agric Food Chem 55:8941–8949. doi:10.1021/jf071645m

    Article  CAS  Google Scholar 

  • Oliveira RMMD (2012) Quantification of catechins and caffeine from green tea (Camellia sinensis) infusions, extract, and ready-to-drink beverages. Food Sci Technol Camp 32:163–166. doi:10.1590/S0101-20612012005000009

    Google Scholar 

  • Pastore RL, Fratellone P (2006) Potential health benefits of green tea (Camellia sinensis): A narrative review. Explore J Sci Heal 2:531–539. doi:10.1016/j.explore.2006.08.008

    Article  Google Scholar 

  • Pesek CA, Wilson LA, Hammond EG (1985) Spice quality: effect of cryogenic and ambient grinding on volatiles. J Food Sci 50:599–601. doi:10.1111/j.1365-2621.1985.tb13753.x

  • Roginsky V, Lissi EA (2005) Review of methods to determine chain-breaking antioxidant activity in food. Food Chem 92:235–254. doi:10.1016/j.foodchem.2004.08.004

    Article  CAS  Google Scholar 

  • Sharififar F, Dehghn-Nudeh G, Mirtajaldini M (2009) Major flavonoids with antioxidant activity from teucrium polium L. Food Chem 112:885–888

    Article  CAS  Google Scholar 

  • Singh Kk, Goswami TK (1999) Studies on cryogenic grinding of cumin seed. J Food Process Eng 22:175–190. doi:10.1111/j.1745-4530.1999.tb00479.x

  • Suzuki T, Kumazoe M, Kim Y, et al. (2013) Green tea extract containing a highly absorbent catechin prevents diet-induced lipid metabolism disorder. Sci Rep. doi:10.1038/srep02749

    Google Scholar 

  • Yao L, Liu X, Jiang Y, et al. (2006) Compositional analysis of teas from Australian supermarkets. Food Chem 94:115–122

    Article  CAS  Google Scholar 

  • Zhang Z, Song H, Peng Z, et al. (2012) Characterization of stipe and cap powders of mushroom (lentinus edodes) prepared by different grinding methods. J Food Eng 109:406–413. doi:10.1016/j.jfoodeng.2011.11.007

    Article  CAS  Google Scholar 

  • Zhao X, Yang Z, Gai G, Yang Y (2009) Effect of superfine grinding on properties of ginger powder. J Food Eng 91:217–222. doi:10.1016/j.jfoodeng.2008.08.024

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Extrapole and LIBio which produced the green tea powders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loïc Becker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaiter, A., Becker, L., Karam, MC. et al. Effect of particle size on antioxidant activity and catechin content of green tea powders. J Food Sci Technol 53, 2025–2032 (2016). https://doi.org/10.1007/s13197-016-2201-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2201-4

Keywords

Navigation