Skip to main content
Log in

Impact of low-trans fat compositions on the quality of conventional and fat-reduced puff pastry

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Four vegetable fat blends (FBs) with low trans-fatty acid (TFA ≤ 0.6 %) content with various ratios of palm stearin (PS) and rapeseed oil (RO) were characterised and examined for their application in puff pastry production. The amount of PS decreased from FB1 to FB4 and simultaneously the RO content increased. A range of analytical methods were used to characterise the FBs, including solid fat content (SFC), differential scanning calorimetry (DSC), cone penetrometry and rheological measurements. The internal and external structural quality parameters of baked puff pastry were investigated using texture analyser equipped with an Extended Craft Knife (ECK), VolScan and C-Cell image system. Puff pastry containing FB1 and FB2 achieved excellent baking results for full fat and fat-reduced puff pastry; hence these FBs contained adequate shortening properties. A fat reduction by 40 % using FB2 and a reduction of saturated fatty acids (SAFA) by 49 %, compared to the control, did not lead to adverse effects in lift and specific volume. The higher amount of RO and the lower SAFA content compared to FB1 coupled with the satisfying baking results makes FB2 the fat of choice in this study. FB3 and FB4 were found to be unsuitable for puff pastry production because of their melting behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymus (2000a) Technologie gezogener Teige Teil II. brot und backwaren 48

  • Anonymus (2000b) Technologie gezogener Teige Teil I. brot und backwaren 48

  • Baum SJ, Kris-Etherton PM, Willett WC, et al. (2012) Fatty acids in cardiovascular health and disease: a comprehensive update. J Clin Lipidol 6:216–234. doi:10.1016/j.jacl.2012.04.077

    Article  Google Scholar 

  • Bell A, Gordon MH, Jirasubkunakorn W, Smith KW (2007) Effects of composition on fat rheology and crystallisation. Food Chem 101:799–805. doi:10.1016/j.foodchem.2006.02.033

    Article  CAS  Google Scholar 

  • Boode-Boissevain K, Van Houdt-Moree JD (1996) Fat-reduced laminated doughs. U.S. Patent No 5480662

  • Cauvain SP, Young LS (2001) Baking problems solved. Woodhead Publishing Ltd, Cambridge

    Book  Google Scholar 

  • Cavillot V, Pierart C, Vincent M, et al. (2009) Margarines with and without trans fatty acids. J Food Lipids 16:273–286

    Article  CAS  Google Scholar 

  • Cheong L-Z, Tan C-P, Long K, et al. (2009) Physicochemical, textural and viscoelastic properties of palm diacylglycerol bakery margarine during storage. J Am Oil Chem Soc 86:723–731. doi:10.1007/s11746-009-1413-4

    Article  CAS  Google Scholar 

  • DeMan JM, Beers AM (1987) Fat crystal networks: structure and rheological properties (review). J Texture Stud 18:303–318

    Article  Google Scholar 

  • Erkkilä A, de Mello VDF, Risérus U, Laaksonen DE (2008) Dietary fatty acids and cardiovascular disease: an epidemiological approach. Prog Lipid Res 47:172–187. doi:10.1016/j.plipres.2008.01.004

    Article  Google Scholar 

  • Garcia-Macias P, Gordon MH, Frazier RA, et al. (2011) Performance of palm-based fat blends with a low saturated fat content in puff pastry. Eur J Lipid Sci Technol 113:1474–1480

    Article  CAS  Google Scholar 

  • Garcia-Macias P, Gordon MH, Frazier RA, et al. (2012) Effect of TAG composition on performance of low saturate shortenings in puff pastry. Eur J Lipid Sci Technol 114:741–747. doi:10.1002/ejlt.201100147

    Article  CAS  Google Scholar 

  • Ghotra BS, Dyal SD, Narine SS (2002) Lipid shortenings: a review. Food Res Int 35:1015–1048

    Article  CAS  Google Scholar 

  • Gunstone FD (2011) Vegetable oils in food technology - composition, properties, and uses. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  • Haighton AJ (1959) The measurement of the hardness of margarine and fats with cone penetrometers. J Am Oil Chem Soc 36:345–348

    Article  CAS  Google Scholar 

  • Kincs FR, Minor MP (1995) Reduced fat roll-in baking compositions and baked goods. U.S. Patent No 5395638

  • Lefébure É, Ronkart S, Brostaux Y, et al. (2013) Investigation of the influence of processing parameters on physicochemical properties of puff pastry margarines using surface response methodology. LWT - Food Sci Technol 51:225–232. doi:10.1016/j.lwt.2012.09.018

    Article  Google Scholar 

  • Marangoni AG (2004) Fat crystal networks. CRC Press, Boca Raton

    Book  Google Scholar 

  • Miskandar MS, Man YC, Yusoff MSA, Rahman RA (2005) Quality of margarine: fats selection and processing parameters. Asia Pac J Clin Nutr 14:387–395

    CAS  Google Scholar 

  • Noll B, Gräber S, Kitta M, et al. (1997) Neue Erkenntnisse zur Herstellung von Blätterteiggebäcken. Getreide Mehl und Brot 51:363–368

    Google Scholar 

  • Nor Aini I, Miskandar MS (2007) Utilization of palm oil and palm products in shortenings and margarines. Eur J Lipid Sci Technol 109:422–432. doi:10.1002/ejlt.200600232

    Article  Google Scholar 

  • Pajin B, Šoronja-Simović D, Šereš Z, et al. (2011) Physicochemical and textural properties of puff pastry margarines. Eur J Lipid Sci Technol 113:262–268. doi:10.1002/ejlt.201000293

    Article  CAS  Google Scholar 

  • Roos Y, Karel M (1991) Plasticizing effect of water on thermal behavior and crystallization of amorphous food models. J Food Sci 56:38–43

    Article  CAS  Google Scholar 

  • Siew WL, Cheah KY, Tang WL (2007) Physical properties of lipase-catalyzed interesterification of palm stearin with canola oil blends. Eur J Lipid Sci Technol 109:97–106. doi:10.1002/ejlt.200600142

    Article  CAS  Google Scholar 

  • Silow C, Zannini E, Belz MCE, Arendt EK (2014) Optimization of fat reduced puff pastry using response surface methodology. (submitted for publication to Cereal Chemistry)

  • Simovic DS, Pajin B, Seres Z, Filipovic N (2009) Effect of low-trans margarine on physicochemical and sensory properties of puff pastry. Int J Food Sci Technol 44:1235–1244

    Article  CAS  Google Scholar 

  • Stauffer CE (1999) Fats and oils, 2nd edn. Eagan Press, St. Paul, Minnesota

    Google Scholar 

  • Telloke GW (1994) Optimierung physikalischer Ziehfetteigenschaften. Getreide, Mehl und Brot 48:74–80

    CAS  Google Scholar 

  • Wassell P, Young NWG (2007) Food applications of trans fatty acid substitutes. Int J Food Sci Technol 42:503–517

    Article  CAS  Google Scholar 

  • Yap PH, deMan JM, deMan L (1989) Polymorphic stability of hydrogenated canola oil as affected by addition of palm oil. J Am Oil Chem Soc 66:1784–1791. doi:10.1007/BF02660748

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Inken Rethwisch for her support in the baking trials and analysis and Valentyn Maidannyk for his support with the DSC. This study was carried out with financial support from the European Commission, FP7, Thematic Area KBBE, Project “PLEASURE” (Grant agreement no: 289536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke K. Arendt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silow, C., Zannini, E. & Arendt, E.K. Impact of low-trans fat compositions on the quality of conventional and fat-reduced puff pastry. J Food Sci Technol 53, 2117–2126 (2016). https://doi.org/10.1007/s13197-016-2186-z

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2186-z

Keywords

Navigation